Deng Yuqing, Cheng Pujin, Xu Ruiwen, Ling Lirong, Xue Hongliang, Zhou Shiyou, Huang Yansong, Lyu Junyan, Wang Zhonghua, Wong Kenneth K Y, Zhang Yimin, Yu Kang, Zhang Tingting, Hu Xiaoqing, Li Xiaoyi, Tang Xiaoying, Lou Yan, Yuan Jin
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
NPJ Digit Med. 2025 May 23;8(1):303. doi: 10.1038/s41746-025-01706-y.
The assessment of corneal fluorescein staining is essential, yet current AI models for Corneal Staining Score (CSS) assessments inadequately identify punctate lesions due to annotation challenges and noise, risk misrepresenting treatment responses through "plateau" effects, and highlight the necessity for real-world evaluations to enhance disease severity assessments. To address these limitations, we developed the Fine-grained Knowledge Distillation Corneal Staining Score (FKD-CSS) model. FKD-CSS integrates fine-grained features into CSS grading, providing continuous and nuanced scores with interpretability. Trained on corneal staining images collected from dry eye (DE) patients across 14 hospitals, FKD-CSS achieved robust accuracy, with a Pearson's r of 0.898 and an AUC of 0.881 in internal validation, matching senior ophthalmologists' performance. External tests on 2376 images from 23 hospitals across China further validated its efficacy (r: 0.844-0.899, AUC: 0.804-0.883). Additionally, FKD-CSS demonstrated generalizability in multi-ocular-surface-disease testing, underscoring its potential in handling different staining patterns.
角膜荧光素染色评估至关重要,但当前用于角膜染色评分(CSS)评估的人工智能模型由于注释挑战和噪声而无法充分识别点状病变,存在通过“平台”效应错误呈现治疗反应的风险,并凸显了进行真实世界评估以加强疾病严重程度评估的必要性。为解决这些局限性,我们开发了细粒度知识蒸馏角膜染色评分(FKD-CSS)模型。FKD-CSS将细粒度特征整合到CSS分级中,提供具有可解释性的连续且细致入微的分数。在从14家医院收集的干眼(DE)患者的角膜染色图像上进行训练后,FKD-CSS实现了稳健的准确性,内部验证中皮尔逊相关系数r为0.898,曲线下面积(AUC)为0.881,与资深眼科医生的表现相当。在中国23家医院对2376张图像进行的外部测试进一步验证了其有效性(r:0.844 - 0.899,AUC:0.804 - 0.883)。此外,FKD-CSS在多眼表疾病测试中表现出通用性,突显了其处理不同染色模式的潜力。