Suppr超能文献

综合人工智能视网膜专家(CARE)系统的应用:一项全国范围的真实世界证据研究。

Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China.

Beijing Eaglevision Technology Development, Beijing, China.

出版信息

Lancet Digit Health. 2021 Aug;3(8):e486-e495. doi: 10.1016/S2589-7500(21)00086-8.

Abstract

BACKGROUND

Medical artificial intelligence (AI) has entered the clinical implementation phase, although real-world performance of deep-learning systems (DLSs) for screening fundus disease remains unsatisfactory. Our study aimed to train a clinically applicable DLS for fundus diseases using data derived from the real world, and externally test the model using fundus photographs collected prospectively from the settings in which the model would most likely be adopted.

METHODS

In this national real-world evidence study, we trained a DLS, the Comprehensive AI Retinal Expert (CARE) system, to identify the 14 most common retinal abnormalities using 207 228 colour fundus photographs derived from 16 clinical settings with different disease distributions. CARE was internally validated using 21 867 photographs and externally tested using 18 136 photographs prospectively collected from 35 real-world settings across China where CARE might be adopted, including eight tertiary hospitals, six community hospitals, and 21 physical examination centres. The performance of CARE was further compared with that of 16 ophthalmologists and tested using datasets with non-Chinese ethnicities and previously unused camera types. This study was registered with ClinicalTrials.gov, NCT04213430, and is currently closed.

FINDINGS

The area under the receiver operating characteristic curve (AUC) in the internal validation set was 0·955 (SD 0·046). AUC values in the external test set were 0·965 (0·035) in tertiary hospitals, 0·983 (0·031) in community hospitals, and 0·953 (0·042) in physical examination centres. The performance of CARE was similar to that of ophthalmologists. Large variations in sensitivity were observed among the ophthalmologists in different regions and with varying experience. The system retained strong identification performance when tested using the non-Chinese dataset (AUC 0·960, 95% CI 0·957-0·964 in referable diabetic retinopathy).

INTERPRETATION

Our DLS (CARE) showed satisfactory performance for screening multiple retinal abnormalities in real-world settings using prospectively collected fundus photographs, and so could allow the system to be implemented and adopted for clinical care.

FUNDING

This study was funded by the National Key R&D Programme of China, the Science and Technology Planning Projects of Guangdong Province, the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, and the Fundamental Research Funds for the Central Universities.

TRANSLATION

For the Chinese translation of the abstract see Supplementary Materials section.

摘要

背景

医学人工智能(AI)已进入临床实施阶段,尽管用于眼底疾病筛查的深度学习系统(DLS)的实际表现仍不尽如人意。我们的研究旨在利用来自真实世界的数据训练一种可用于临床的眼底疾病 DLS,并使用该模型最有可能被采用的环境中前瞻性收集的眼底照片对模型进行外部测试。

方法

在这项全国性的真实世界证据研究中,我们利用来自 16 个临床环境的 207228 张彩色眼底照片(不同疾病分布),训练一个名为 Comprehensive AI Retinal Expert(CARE)的 DLS,以识别 14 种最常见的视网膜异常。CARE 采用来自中国 35 个真实环境中前瞻性收集的 18136 张照片进行内部验证,这些环境可能会采用 CARE,包括 8 家三级医院、6 家社区医院和 21 个体检中心。CARE 的性能还与 16 名眼科医生进行了比较,并使用非中文数据集和以前未使用过的相机类型进行了测试。这项研究在 ClinicalTrials.gov 注册,注册号为 NCT04213430,目前已关闭。

结果

内部验证集中的受试者工作特征曲线下面积(AUC)为 0.955(SD 0.046)。在外部测试集中,三级医院的 AUC 值为 0.965(0.035),社区医院为 0.983(0.031),体检中心为 0.953(0.042)。CARE 的性能与眼科医生的性能相似。不同地区和经验水平的眼科医生之间的敏感性差异很大。当使用非中文数据集进行测试时,该系统保持了较强的识别性能(可检出的糖尿病视网膜病变的 AUC 为 0.960,95%CI 为 0.957-0.964)。

解释

我们的 DLS(CARE)在使用前瞻性收集的眼底照片进行真实环境下的多种视网膜异常筛查方面表现出令人满意的性能,因此可以将该系统用于临床护理。

资助

本研究由中国国家重点研发计划、广东省科技计划项目、国家自然科学基金、广东省自然科学基金和中央高校基本科研业务费资助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验