Suppr超能文献

Cell cycle age dependence for radiation-induced G2 arrest: evidence for time-dependent repair.

作者信息

Rowley R, Leeper D B

出版信息

Radiat Res. 1985 Sep;103(3):326-36.

PMID:4041062
Abstract

Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G2. The sensitivity of Chinese hamster ovary cells to G2-arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G2. This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G2 arrest and/or by changes in capability for postirradiation recovery from G2-arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G2-arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G2 arrest, while inhibiting repair of G2-arrest-causing damage makes such an analysis possible. CHO cell monolayers were irradiated (1.5 Gy), then exposed to 5 mM caffeine for periods of 0-10 hr. Cell progression was monitored by the mitotic cell selection procedure. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G2 arrest was expressed. The duration of G2 arrest was independent of the length of the prior caffeine exposure and, since cells of all ages were ultimately examined, the duration of arrest was also independent of cell cycle age at the time of irradiation. This finding indicates that the target for G2-arrest induction is present throughout the cell cycle and that the level of G2-arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G2 arrest.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验