Suppr超能文献

一种用于从游离DNA测序数据中进行稳健的片段组学特征提取的标准化框架。

A standardized framework for robust fragmentomic feature extraction from cell-free DNA sequencing data.

作者信息

Wang Haichao, Mennea Paulius D, Chan Yu Kiu Elkie, Cheng Zhao, Neofytou Maria C, Surani Arif Anwer, Vijayaraghavan Aadhitthya, Ditter Emma-Jane, Bowers Richard, Eldridge Matthew D, Shcherbo Dmitry S, Smith Christopher G, Markowetz Florian, Cooper Wendy N, Kaplan Tommy, Rosenfeld Nitzan, Zhao Hui

机构信息

Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.

Cancer Research UK Cambridge Centre, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.

出版信息

Genome Biol. 2025 May 23;26(1):141. doi: 10.1186/s13059-025-03607-5.

Abstract

Fragmentomics features of cell-free DNA represent promising non-invasive biomarkers for cancer diagnosis. A lack of systematic evaluation of biases in feature quantification hinders the adoption of such applications. We compare features derived from whole-genome sequencing of ten healthy donors using nine library kits and ten data-processing routes and validated in 1182 plasma samples from published studies. Our results clarify the variations from library preparation and feature quantification methods. We design the Trim Align Pipeline and cfDNAPro R package as unified interfaces for data pre-processing, feature extraction, and visualization to standardize multi-modal feature engineering and integration for machine learning.

摘要

游离DNA的片段组学特征代表了用于癌症诊断的有前景的非侵入性生物标志物。缺乏对特征量化偏差的系统评估阻碍了此类应用的采用。我们比较了使用九种文库试剂盒和十种数据处理路径从十名健康供体的全基因组测序中获得的特征,并在已发表研究的1182份血浆样本中进行了验证。我们的结果阐明了文库制备和特征量化方法的差异。我们设计了Trim Align Pipeline和cfDNAPro R包作为数据预处理、特征提取和可视化的统一接口,以标准化用于机器学习的多模态特征工程和集成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验