Suppr超能文献

先入为主的信念,不同的反应:通过启动生成式人工智能信念来减轻服务失败时用户的转换意图。

Preconceived beliefs, different reactions: alleviating user switching intentions in service failures through priming GenAI beliefs.

作者信息

Lv Dong, Sun Rui, Zhu Qiuhua, Qin Shukun

机构信息

School of Business Administration, Huaqiao University, Quanzhou, China.

Chen Shouren College of Business, Quanzhou Normal University, Quanzhou City, China.

出版信息

BMC Psychol. 2025 May 23;13(1):552. doi: 10.1186/s40359-025-02894-8.

Abstract

Generative artificial intelligence's (GenAI) fast progress has opened up new possibilities, but it has also increased the likelihood of service failure. This study investigates how belief priming affects users' intention to switch following a failure in GenAI services. Based on mental model theory and the associative proposition evaluation model, we conducted scenario surveys and event-related potential (ERP) studies as part of a mixed-method approach to explore the impact of different types of belief priming (AI emotions are real vs. AI emotions are fake) on users' switching intentions, and examined the mediating role of fault attribution and the moderating role of task type (emotional tasks vs. mechanical tasks). The questionnaire results show that priming with the belief "AI emotions are fake" can effectively reduce users' switching intentions after service failures, especially in emotional tasks. Error responsibility attribution plays a mediating role between belief priming and switching intentions. ERP results indicate that, in the event of service failure, the amplitude of the P2 component in the "AI emotions are real" belief priming group was significantly higher than that in the "AI emotions are fake" belief priming group, especially in emotional tasks. This study reveals the significant role of belief priming in shaping users' reactions to failures in GenAI services, providing empirical evidence for GenAI service providers to develop effective service remediation strategies.

摘要

生成式人工智能(GenAI)的快速发展开辟了新的可能性,但也增加了服务失败的可能性。本研究调查了信念启动如何影响用户在GenAI服务失败后更换服务的意愿。基于心智模型理论和关联命题评估模型,我们采用混合研究方法,开展了情景调查和事件相关电位(ERP)研究,以探究不同类型的信念启动(人工智能情感是真实的与人工智能情感是虚假的)对用户更换意愿的影响,并考察了故障归因的中介作用和任务类型(情感任务与机械任务)的调节作用。问卷调查结果表明,用“人工智能情感是虚假的”信念进行启动能够有效降低服务失败后用户的更换意愿,尤其是在情感任务中。错误责任归因在信念启动和更换意愿之间起中介作用。ERP结果表明,在服务失败的情况下,“人工智能情感是真实的”信念启动组的P2成分波幅显著高于“人工智能情感是虚假的”信念启动组,尤其是在情感任务中。本研究揭示了信念启动在塑造用户对GenAI服务失败反应中的重要作用,为GenAI服务提供商制定有效的服务补救策略提供了实证依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f95/12102992/463d2155d046/40359_2025_2894_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验