Suppr超能文献

长链非编码RNA GFOD1-AS1的N4-乙酰胞苷修饰通过稳定DNMT1蛋白促进高糖诱导的人真皮微血管内皮细胞功能障碍。

N4-acetylcytidine modification of LncRNA GFOD1-AS1 promotes high glucose-induced dysfunction in human dermal microvascular endothelial cells through stabilization of DNMT1 protein.

作者信息

Yuan Jingjing, Li Lusha, Lv Yang, Yang Wenjun

机构信息

Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.

Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China.

出版信息

Funct Integr Genomics. 2025 May 24;25(1):107. doi: 10.1007/s10142-025-01617-x.

Abstract

Emerging evidence supports that angiogenesis is essential for the wound healing of diabetic foot ulcer (DFU), and high glucose (HG)-induced dysfunction of human dermal microvascular endothelial cells is a key factor that hinders angiogenesis. However, the underlying mechanisms by which HG leads to the dysfunction of human dermal microvascular endothelial cells has not been fully elucidated. In the present investigation, we discovered a significant upregulation of the long non-coding RNA GFOD1-AS1(GFOD1-AS1) in the ulcer margin samples of patients with DFU and the HG-induced dysfunction model of human dermal microvascular endothelial cells, attributing its dysregulation to the stabilizing effect of NAT10-mediated ac4C modification, as corroborated by an integrated approach of data mining and experimental validation. Subsequently, a series of in vitro functional analyses showed that ectopic expression of GFOD1-AS1 promoted impaired function of human dermal microvascular endothelial cells. In contrast, knockdown of GFOD1-AS1 significantly alleviated the HG-induced functional impairment in human dermal microvascular endothelial cells, as indicated by the enhanced cell proliferation, migration, and tube formation. Mechanistically, GFOD1-AS1 directly interacts with DNA methyltransferase DNMT1 to block its ubiquitin-proteasome degradation, thereby enhancing the protein stability of DNMT1.This stability elevates DNMT1 protein expression, ultimately inducing HG-induced dysfunction in human dermal microvascular endothelial cells. In summary, our results reveal that GFOD1-AS1 serves as a potential therapeutic target for DFU, and highlight the critical role of the NAT10/GFOD1-AS1/DNMT1 axis in the dysfunction of human dermal microvascular endothelial cells in DFU.

摘要

新出现的证据支持血管生成对糖尿病足溃疡(DFU)伤口愈合至关重要,而高糖(HG)诱导的人真皮微血管内皮细胞功能障碍是阻碍血管生成的关键因素。然而,HG导致人真皮微血管内皮细胞功能障碍的潜在机制尚未完全阐明。在本研究中,我们发现DFU患者溃疡边缘样本和HG诱导的人真皮微血管内皮细胞功能障碍模型中长链非编码RNA GFOD1-AS1(GFOD1-AS1)显著上调,通过数据挖掘和实验验证的综合方法证实,其失调归因于NAT10介导的ac4C修饰的稳定作用。随后,一系列体外功能分析表明,GFOD1-AS1的异位表达促进了人真皮微血管内皮细胞功能受损。相反,GFOD1-AS1的敲低显著减轻了HG诱导的人真皮微血管内皮细胞功能损伤,表现为细胞增殖、迁移和管形成增强。机制上,GFOD1-AS1直接与DNA甲基转移酶DNMT1相互作用,阻止其泛素-蛋白酶体降解,从而增强DNMT1的蛋白质稳定性。这种稳定性提高了DNMT1蛋白表达,最终诱导HG诱导的人真皮微血管内皮细胞功能障碍。总之,我们的结果表明GFOD1-AS1是DFU的潜在治疗靶点,并突出了NAT10/GFOD1-AS1/DNMT1轴在DFU人真皮微血管内皮细胞功能障碍中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ee3/12103335/90e8be48315f/10142_2025_1617_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验