Suppr超能文献

基于深度学习的高校思想政治教育体系设计优化

Design optimization of university ideological and political education system based on deep learning.

作者信息

Ai Shangle, Ding Huanhuan

机构信息

School of Public Administration, Guangdong University of Finance, Guangzhou, 510521, China.

School of Management, Guangzhou Xinhua University, Guangzhou, 510520, China.

出版信息

Sci Rep. 2025 May 25;15(1):18134. doi: 10.1038/s41598-025-02991-z.

Abstract

This study seeks to enhance the effectiveness and student engagement in university ideological and political education (IPE) by leveraging deep learning technology. Traditional IPE approaches often fall short in terms of flexibility and interactivity, resulting in diminished student participation. The advancement of deep learning technology offers new opportunities for IPE due to its powerful capabilities in feature extraction and pattern recognition. This research employs a CNN-LSTM hybrid model, integrating Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM). By analyzing students' learning needs and interests, personalized learning paths and resource recommendations are provided for them. Firstly, this paper introduces the research methods in detail, including deep learning algorithm and model design, as well as the optimization design process of IPE system. The hybrid model combines the advantages of CNN in feature extraction and the ability of LSTM in processing sequence data to realize accurate analysis of IPE data. In the discussion part of experiment and result analysis, the model is trained and verified by collecting multi-channel data related to university IPE and using high-performance server. The results show that CNN-LSTM hybrid model is superior to traditional methods such as SVM and random forest in accuracy, recall and F1 score. This proves the powerful ability of deep learning model in dealing with complex data and capturing the internal laws and relationships of data. This study optimizes the design of university IPE system through deep learning technology, which not only improves the pertinence and effectiveness of education, but also provides new ideas and directions for the application of deep learning in the field of education.

摘要

本研究旨在通过利用深度学习技术提高大学思想政治教育(IPE)的有效性和学生参与度。传统的IPE方法在灵活性和交互性方面往往存在不足,导致学生参与度降低。深度学习技术的进步由于其在特征提取和模式识别方面的强大能力,为IPE提供了新的机会。本研究采用CNN-LSTM混合模型,将卷积神经网络(CNN)和长短期记忆(LSTM)相结合。通过分析学生的学习需求和兴趣,为他们提供个性化的学习路径和资源推荐。首先,本文详细介绍了研究方法,包括深度学习算法和模型设计,以及IPE系统的优化设计过程。该混合模型结合了CNN在特征提取方面的优势和LSTM在处理序列数据方面的能力,以实现对IPE数据的准确分析。在实验和结果分析的讨论部分,通过收集与大学IPE相关的多通道数据并使用高性能服务器对模型进行训练和验证。结果表明,CNN-LSTM混合模型在准确率、召回率和F1分数方面优于支持向量机(SVM)和随机森林等传统方法。这证明了深度学习模型在处理复杂数据以及捕捉数据内部规律和关系方面的强大能力。本研究通过深度学习技术优化了大学IPE系统的设计,不仅提高了教育的针对性和有效性,还为深度学习在教育领域的应用提供了新的思路和方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f560/12103489/f2addf8e3656/41598_2025_2991_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验