Department of Computer Science & Engineering, Chandigarh University Gharuan Mohali, Gharuan, 140413, Punjab, India.
Amity School of Engineering and Technology, Amity University Haryana, Panchgaon, Haryana, India.
Sci Rep. 2024 Feb 24;14(1):4533. doi: 10.1038/s41598-024-54927-8.
Postpartum Depression Disorder (PPDD) is a prevalent mental health condition and results in severe depression and suicide attempts in the social community. Prompt actions are crucial in tackling PPDD, which requires a quick recognition and accurate analysis of the probability factors associated with this condition. This concern requires attention. The primary aim of our research is to investigate the feasibility of anticipating an individual's mental state by categorizing individuals with depression from those without depression using a dataset consisting of text along with audio recordings from patients diagnosed with PPDD. This research proposes a hybrid PPDD framework that combines Improved Bi-directional Long Short-Term Memory (IBi-LSTM) with Transfer Learning (TL) based on two Convolutional Neural Network (CNN) architectures, respectively CNN-text and CNN audio. In the proposed model, the CNN section efficiently utilizes TL to obtain crucial knowledge from text and audio characteristics, whereas the improved Bi-LSTM module combines written material and sound data to obtain intricate chronological interpersonal relationships. The proposed model incorporates an attention technique to augment the effectiveness of the Bi-LSTM scheme. An experimental analysis is conducted on the PPDD online textual and speech audio dataset collected from UCI. It includes textual features such as age, women's health tracks, medical histories, demographic information, daily life metrics, psychological evaluations, and 'speech records' of PPDD patients. Data pre-processing is applied to maintain the data integrity and achieve reliable model performance. The proposed model demonstrates a great performance in better precision, recall, accuracy, and F1-score over existing deep learning models, including VGG-16, Base-CNN, and CNN-LSTM. These metrics indicate the model's ability to differentiate among women at risk of PPDD vs. non-PPDD. In addition, the feature importance analysis demonstrates that specific risk factors substantially impact the prediction of PPDD. The findings of this research establish a basis for improved precision and promptness in assessing the risk of PPDD, which may ultimately result in earlier implementation of interventions and the establishment of support networks for women who are susceptible to PPDD.
产后抑郁症(PPDD)是一种普遍的心理健康状况,会导致社交群体中严重的抑郁和自杀企图。及时采取行动对于解决 PPDD 至关重要,这需要快速识别和准确分析与这种情况相关的概率因素。这是一个值得关注的问题。我们的研究主要目的是通过使用包含文本和来自被诊断为 PPDD 的患者的音频记录的数据集,来研究通过将患有抑郁症的个体与没有抑郁症的个体进行分类,从而预测个体的精神状态的可行性。这项研究提出了一个结合改进的双向长短时记忆网络(IBi-LSTM)和基于两个卷积神经网络(CNN)架构的迁移学习(TL)的混合 PPDD 框架,分别为 CNN-text 和 CNN-audio。在提出的模型中,CNN 部分有效地利用 TL 从文本和音频特征中获取关键知识,而改进的双向 LSTM 模块则结合书面材料和声音数据来获取复杂的时间人际关系。提出的模型采用注意力技术来增强 Bi-LSTM 方案的有效性。我们对从 UCI 收集的 PPDD 在线文本和语音音频数据集进行了实验分析。该数据集包含年龄、妇女健康轨迹、病史、人口统计信息、日常生活指标、心理评估和 PPDD 患者的“语音记录”等文本特征。数据预处理用于保持数据完整性并实现可靠的模型性能。与现有的深度学习模型(包括 VGG-16、Base-CNN 和 CNN-LSTM)相比,提出的模型在精度、召回率、准确性和 F1 分数方面表现出了更好的性能。这些指标表明该模型能够区分患有 PPDD 和未患有 PPDD 的女性。此外,特征重要性分析表明,特定的风险因素对 PPDD 的预测有重大影响。这项研究的结果为提高评估 PPDD 风险的准确性和及时性奠定了基础,这可能最终导致更早地实施干预措施,并为易患 PPDD 的女性建立支持网络。