Suppr超能文献

一种结合卷积块注意力模块的混合长短期记忆-卷积神经网络多流深度学习模型,用于猴痘检测。

A hybrid long short-term memory-convolutional neural network multi-stream deep learning model with Convolutional Block Attention Module incorporated for monkeypox detection.

作者信息

Yeboah Benjamin Appiah, Micah Kojo Sam, Acquah Isaac, Mensah Kofi Ampomah

机构信息

Biomedical Engineering Program, Department of Computer Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

出版信息

Sci Prog. 2025 Jan-Mar;108(1):368504251331706. doi: 10.1177/00368504251331706. Epub 2025 Mar 28.

Abstract

BackgroundMonkeypox (mpox) is a zoonotic infectious disease caused by the mpox virus and characterized by painful body lesions, fever, headaches, and exhaustion. Since the report of the first human case of mpox in Africa, there have been multiple outbreaks, even in nonendemic regions of the world. The emergence and re-emergence of mpox highlight the critical need for early detection, which has spurred research into applying deep learning to improve diagnostic capabilities.ObjectiveThis research aims to develop a robust hybrid long short-term memory (LSTM)-convolutional neural network (CNN) model with a Convolutional Block Attention Module (CBAM) to provide a potential tool for the early detection of mpox.MethodsA hybrid LSTM-CNN multi-stream deep learning model with CBAM was developed and trained using the Mpox Skin Lesion Dataset Version 2.0 (MSLD v2.0). We employed LSTM layers for preliminary feature extraction, CNN layers for further feature extraction, and CBAM for feature conditioning. The model was evaluated with standard metrics, and gradient-weighted class activation maps (Grad-CAM) and local interpretable model-agnostic explanations (LIME) were used for interpretability.ResultsThe model achieved an F1-score, recall, and precision of 94%, an area under the curve of 95.04%, and an accuracy of 94%, demonstrating competitive performance compared to the state-of-the-art models. This robust performance highlights the reliability of our model. LIME and Grad-CAM offered insights into the model's decision-making process.ConclusionThe hybrid LSTM-CNN multi-stream deep learning model with CBAM successfully detects mpox, providing a promising early detection tool that can be integrated into web and mobile platforms for convenient and widespread use.

摘要

背景

猴痘是一种由猴痘病毒引起的人畜共患传染病,其特征为身体出现疼痛性损伤、发热、头痛和疲惫。自非洲报告首例人类猴痘病例以来,已发生多次疫情,甚至在世界非流行地区也有出现。猴痘的出现和再次出现凸显了早期检测的迫切需求,这推动了将深度学习应用于提高诊断能力的研究。

目的

本研究旨在开发一种带有卷积块注意力模块(CBAM)的强大混合长短期记忆(LSTM)-卷积神经网络(CNN)模型,为猴痘的早期检测提供一种潜在工具。

方法

开发了一种带有CBAM的混合LSTM-CNN多流深度学习模型,并使用猴痘皮肤损伤数据集版本2.0(MSLD v2.0)进行训练。我们使用LSTM层进行初步特征提取,CNN层进行进一步特征提取,CBAM进行特征调整。该模型使用标准指标进行评估,并使用梯度加权类激活映射(Grad-CAM)和局部可解释模型无关解释(LIME)进行可解释性分析。

结果

该模型的F1分数、召回率和精确率达到94%,曲线下面积为95.04%,准确率为94%,与最先进的模型相比表现出竞争力。这种强大的性能凸显了我们模型的可靠性。LIME和Grad-CAM为模型的决策过程提供了见解。

结论

带有CBAM的混合LSTM-CNN多流深度学习模型成功检测出猴痘,提供了一种有前景的早期检测工具,可集成到网络和移动平台上以便于广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c330/11951888/03cbf6aec295/10.1177_00368504251331706-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验