Zhang Bowei, Li Xiaoyu, Zhang Jie, Wang Junying, Jin Hui
State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, PR China.
State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi, PR China.
Water Res. 2025 Sep 1;283:123856. doi: 10.1016/j.watres.2025.123856. Epub 2025 May 17.
Nano-confined binary mixtures are prevalent in the chemical industry, geology, and energy sectors. Investigating their mass transfer behavior can enhance process intensification. This study examines the confined self-diffusion coefficients of binary mixtures of supercritical water (SCW) with H, CO, CO and CH in carbon nanotubes (CNT) using molecular dynamics (MD) simulations at temperatures of 673-973 K, a pressure of 25-28 MPa, solute molar concentrations of 0.01-0.3, and CNT diameters of 9.49-29.83 Å. We developed a novel machine learning (ML) clustering method to optimize abnormal MSD-t data, effectively extracting information and providing algorithmic enhancements for calculating the diffusion coefficient. We analyzed the effects of temperature, solute molar concentration, and CNT diameter on the confined self-diffusion coefficient and energy input. Results indicate that over 60 % of the solute energy input derives from the Lennard-Jones effect of the CNT wall. The confined self-diffusion coefficient of solutes increases linearly with temperature, saturates with increasing CNT diameter, and remains relatively constant with varying concentration. Finally, based on the unique relationship between CNTs and the confined self-diffusion coefficient, we developed a new mathematical model for prediction. The regression line exhibits an R value of 0.9789, offering a new method for predicting the properties of nano-confined fluids.
纳米受限二元混合物在化学工业、地质和能源领域普遍存在。研究它们的传质行为可以增强过程强化。本研究使用分子动力学(MD)模拟,在温度为673 - 973 K、压力为25 - 28 MPa、溶质摩尔浓度为0.01 - 0.3以及碳纳米管(CNT)直径为9.49 - 29.83 Å的条件下,考察了超临界水(SCW)与H、CO、CO₂和CH₄在碳纳米管中的二元混合物的受限自扩散系数。我们开发了一种新颖的机器学习(ML)聚类方法来优化异常的MSD - t数据,有效提取信息并为计算扩散系数提供算法增强。我们分析了温度、溶质摩尔浓度和碳纳米管直径对受限自扩散系数和能量输入的影响。结果表明,超过60%的溶质能量输入源自碳纳米管壁的 Lennard - Jones 效应。溶质的受限自扩散系数随温度线性增加,随碳纳米管直径增加而饱和,并且随浓度变化保持相对恒定。最后,基于碳纳米管与受限自扩散系数之间的独特关系,我们开发了一种新的预测数学模型。回归线的R值为0.9789,为预测纳米受限流体的性质提供了一种新方法。