Khan Golam Rosul, Saito Shinji, Daschakraborty Snehasis
Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India.
Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
J Phys Chem B. 2025 Jul 3;129(26):6561-6573. doi: 10.1021/acs.jpcb.5c02233. Epub 2025 Jun 18.
The diffusion of water in carbon nanotubes (CNTs) is debated, particularly whether it is faster near the CNT wall or at the center and how the temperature influences this effect. Using molecular dynamics (MD) simulations, we study radially resolved water diffusion in CNT(26,26) (3.57 nm diameter) over a wide temperature range. Diffusion along the CNT axis is significantly enhanced compared to that of bulk water, with the effect intensifying at lower temperatures. Supercooling further amplifies this enhancement following near-Arrhenius behavior. Confinement has a smaller impact on the rotational dynamics. By resolving water motion into radial layers, we find that both translational and rotational dynamics are higher near the CNT wall due to weakened hydrogen bonding. The presence of dangling O-H bonds reduces friction at the CNT-water interface. Revisiting an NMR study, we suggest that the high-intensity peak corresponds to central layers, aligning with our MD results and refining our insights into confined water dynamics.
碳纳米管(CNT)中水分子的扩散存在争议,特别是在碳纳米管壁附近还是中心扩散更快,以及温度如何影响这种效应。我们使用分子动力学(MD)模拟,在很宽的温度范围内研究了碳纳米管(26,26)(直径3.57纳米)中径向分辨的水分子扩散。与大块水相比,沿碳纳米管轴的扩散显著增强,且在较低温度下这种效应更明显。过冷遵循近似阿累尼乌斯行为进一步放大了这种增强效应。限制对旋转动力学的影响较小。通过将水分子运动分解为径向层,我们发现由于氢键减弱,在碳纳米管壁附近平移和旋转动力学都更高。悬空的O-H键的存在降低了碳纳米管与水界面处的摩擦力。回顾一项核磁共振研究,我们认为高强度峰对应于中心层,这与我们的分子动力学模拟结果一致,并深化了我们对受限水动力学的理解。