Suppr超能文献

基于多模态磁共振成像(MRI)图像和非图像临床数据检测新生儿急性胆红素脑病。

Detecting acute bilirubin encephalopathy in neonates based on multimodal MRI images and non-image clinical data.

作者信息

Wu Miao, Liu Qian, Lai Can

机构信息

College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, China.

Basic Medical College, Xinjiang Medical University, Urumqi, 830011, China.

出版信息

BMC Pediatr. 2025 May 26;25(1):419. doi: 10.1186/s12887-025-05411-3.

Abstract

PURPOSE

Accurately detecting Acute bilirubin encephalopathy (ABE) from non-ABE neonates with hyperbilirubinemia (HB) condition remains a challenge in clinical practice. In this study, an automatic ABE diagnosing system based on multi-modal MRI images and non-image clinical metadata is proposed to address the issue.

METHODS

A total of 75 ABE neonates and 75 non-ABE neonates with HB are included in the study. Each patient has 3 multi-modal magnetic resonance images and 8 non-image clinical features. To investigate the diagnosing model's performance, 3 different feature sets, namely deep features from multi-modal MRI images, non-image clinical features, and fusion features, are extracted, respectively, and then further classified by a support vector machine (SVM), respectively.

RESULTS

The results indicated the SVM classifier built on the fusion features achieved the best classification performance with an accuracy of 93.24 ± 2.35, specificity of 91.38 ± 4.45%, sensitivity of 95.11 ± 2.97%, precision of 91.87 ± 3.88%, area-under-the-curve (AUC) of 98.08 ± 1.16%, F1_score of 93.38 ± 2.23%. The performance of the SVM classifier built on the deep features was better than that built on the non-image clinical features.

CONCLUSION

Our study demonstrated that ABE diagnostic performance based on deep features from multi-modal MRI images could be significantly improved by incorporating clinical features. The proposed strategy may potentially be applicable to clinical practice to facilitate clinical management.

摘要

目的

在临床实践中,准确区分患有高胆红素血症(HB)的非急性胆红素脑病(ABE)新生儿和ABE新生儿仍然是一项挑战。在本研究中,我们提出了一种基于多模态MRI图像和非图像临床元数据的自动ABE诊断系统来解决这一问题。

方法

本研究共纳入75例患有HB的ABE新生儿和75例非ABE新生儿。每位患者有3幅多模态磁共振图像和8项非图像临床特征。为了研究诊断模型的性能,我们分别提取了3种不同的特征集,即来自多模态MRI图像的深度特征、非图像临床特征和融合特征,然后分别通过支持向量机(SVM)进行进一步分类。

结果

结果表明,基于融合特征构建的SVM分类器具有最佳的分类性能,准确率为93.24±2.35,特异性为91.38±4.45%,灵敏度为95.11±2.97%,精确率为91.87±3.88%,曲线下面积(AUC)为98.08±1.16%,F1分数为93.38±2.23%。基于深度特征构建的SVM分类器的性能优于基于非图像临床特征构建的分类器。

结论

我们的研究表明,通过纳入临床特征,可以显著提高基于多模态MRI图像深度特征的ABE诊断性能。所提出的策略可能适用于临床实践,以促进临床管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3010/12105195/e7017e10f2b3/12887_2025_5411_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验