Dagal Idriss, Harrison Ambe, Mbasso Wulfran Fendzi, Kemdoum Fritz Nguemo, Khishe Mohammad, Jangir Pradeep, Smerat Aseel, Al-Gahtani Saad F, Elbarbary Z M S, Donfack Emmanuel Fendzi, Abouobaida Hassan
Electrical Engineering, Ayazağa Mahallesi, Beykent University, Hadım Koruyolu Cd. No:19, Sarıyer, Istanbul, Turkey.
Department of Electrical and Electronics Engineering, College of Technology (COT), University of Buea, P.O. Box Buea 63, South West Province, Cameroon.
Sci Rep. 2025 May 25;15(1):18155. doi: 10.1038/s41598-025-00594-2.
This study introduces a novel metaheuristic optimization algorithm named Logarithmic Mean-Based Optimization (LMO), designed to enhance convergence speed and global optimality in complex energy optimization problems. LMO leverages logarithmic mean operations to achieve a superior balance between exploration and exploitation. The algorithm's performance was benchmarked against six established methods-Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Grey Wolf Optimizer (GWO), Cuckoo Search Algorithm (CSA), and Firefly Algorithm (FA)-using the CEC 2017 suite of 23 high-dimensional functions. LMO achieved the best solution on 19 out of 23 benchmark functions, significantly outperforming all comparison algorithms. It demonstrated a mean improvement of 83% in convergence time and up to 95% better accuracy in optimal values over competitors. In a real-world application, LMO was employed to optimize a hybrid photovoltaic (PV) and wind energy system, achieving a 5000 kWh energy yield at a minimized cost of $20,000, outperforming all other algorithms in both efficiency and effectiveness. The results affirm LMO's capability for robust, scalable, and cost-effective optimization in renewable energy systems.
本研究介绍了一种名为基于对数均值的优化算法(LMO)的新型元启发式优化算法,旨在提高复杂能源优化问题中的收敛速度和全局最优性。LMO利用对数均值运算在探索和利用之间实现了更好的平衡。该算法的性能与六种既定方法——遗传算法(GA)、粒子群优化算法(PSO)、蚁群优化算法(ACO)、灰狼优化算法(GWO)、布谷鸟搜索算法(CSA)和萤火虫算法(FA)——进行了对比,使用了CEC 2017的23个高维函数套件。LMO在23个基准函数中的19个上获得了最佳解决方案,显著优于所有比较算法。它在收敛时间上平均提高了83%,在最优值方面比竞争对手的精度高出95%。在实际应用中,LMO被用于优化混合光伏(PV)和风能系统,以20000美元的最低成本实现了5000千瓦时的发电量,在效率和有效性方面均优于所有其他算法。结果证实了LMO在可再生能源系统中进行稳健、可扩展和具有成本效益的优化的能力。