Settelmeier Jens, Goetze Sandra, Boshart Julia, Fu Jianbo, Khoo Amanda, Steiner Sebastian N, Gesell Martin, Hammer Jacqueline, Schüffler Peter J, Salimova Diyora, Pedrioli Patrick G A, Wollscheid Bernd
Institute of Translational Medicine at the Department of Health Sciences and Technology, ETH, Zurich 8093, Switzerland.
Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
J Proteome Res. 2025 Jun 6;24(6):2816-2831. doi: 10.1021/acs.jproteome.4c01066. Epub 2025 May 25.
MultiOmicsAgent (MOAgent) is an innovative, Python-based open-source tool for biomarker discovery, utilizing machine learning techniques, specifically extreme gradient-boosted decision trees, to process multiomics data. With its cross-platform compatibility, user-oriented graphical interface, and well-documented API, MOAgent not only meets the needs of both coding professionals and those new to machine learning but also addresses common data analysis challenges like normalization, data incompleteness, class imbalances and data leakage between disjoint data splits. MOAgent's guided data analysis strategy opens up data-driven insights from digitized clinical biospecimen cohorts, making advanced data analysis accessible and reliable for a wide audience.
多组学智能体(MOAgent)是一款创新的基于Python的开源工具,用于生物标志物发现,它利用机器学习技术,特别是极端梯度提升决策树来处理多组学数据。凭借其跨平台兼容性、面向用户的图形界面和文档完善的应用程序编程接口(API),MOAgent不仅满足了编码专业人员和机器学习新手的需求,还解决了诸如归一化、数据不完整、类不平衡以及不相交数据分割之间的数据泄露等常见数据分析挑战。MOAgent的引导式数据分析策略开启了从数字化临床生物样本队列中获取数据驱动见解的大门,使广大受众都能进行先进且可靠的数据分析。