Suppr超能文献

多视图学习理解功能多组学。

Multiview learning for understanding functional multiomics.

机构信息

Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America.

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS Comput Biol. 2020 Apr 2;16(4):e1007677. doi: 10.1371/journal.pcbi.1007677. eCollection 2020 Apr.

Abstract

The molecular mechanisms and functions in complex biological systems currently remain elusive. Recent high-throughput techniques, such as next-generation sequencing, have generated a wide variety of multiomics datasets that enable the identification of biological functions and mechanisms via multiple facets. However, integrating these large-scale multiomics data and discovering functional insights are, nevertheless, challenging tasks. To address these challenges, machine learning has been broadly applied to analyze multiomics. This review introduces multiview learning-an emerging machine learning field-and envisions its potentially powerful applications to multiomics. In particular, multiview learning is more effective than previous integrative methods for learning data's heterogeneity and revealing cross-talk patterns. Although it has been applied to various contexts, such as computer vision and speech recognition, multiview learning has not yet been widely applied to biological data-specifically, multiomics data. Therefore, this paper firstly reviews recent multiview learning methods and unifies them in a framework called multiview empirical risk minimization (MV-ERM). We further discuss the potential applications of each method to multiomics, including genomics, transcriptomics, and epigenomics, in an aim to discover the functional and mechanistic interpretations across omics. Secondly, we explore possible applications to different biological systems, including human diseases (e.g., brain disorders and cancers), plants, and single-cell analysis, and discuss both the benefits and caveats of using multiview learning to discover the molecular mechanisms and functions of these systems.

摘要

目前,复杂生物系统中的分子机制和功能仍然难以捉摸。最近的高通量技术,如下一代测序,已经产生了各种各样的多组学数据集,这些数据集可以通过多个方面来识别生物功能和机制。然而,整合这些大规模的多组学数据并发现功能见解仍然是具有挑战性的任务。为了解决这些挑战,机器学习已被广泛应用于分析多组学。本文介绍了多视图学习——一个新兴的机器学习领域,并设想了它在多组学中的潜在强大应用。特别是,多视图学习比以前的整合方法更有效地学习数据的异质性并揭示交叉对话模式。尽管它已经应用于计算机视觉和语音识别等各种领域,但多视图学习尚未广泛应用于生物数据,特别是多组学数据。因此,本文首先回顾了最近的多视图学习方法,并将它们统一在一个称为多视图经验风险最小化(MV-ERM)的框架中。我们进一步讨论了每种方法在多组学中的潜在应用,包括基因组学、转录组学和表观基因组学,旨在发现跨组学的功能和机制解释。其次,我们探索了在不同生物系统中的可能应用,包括人类疾病(例如,大脑紊乱和癌症)、植物和单细胞分析,并讨论了使用多视图学习来发现这些系统的分子机制和功能的好处和注意事项。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/228f/7117667/007ce02d851a/pcbi.1007677.g001.jpg

相似文献

1
Multiview learning for understanding functional multiomics.多视图学习理解功能多组学。
PLoS Comput Biol. 2020 Apr 2;16(4):e1007677. doi: 10.1371/journal.pcbi.1007677. eCollection 2020 Apr.
2
Spatially Resolved Single-Cell Omics: Methods, Challenges, and Future Perspectives.空间分辨单细胞组学:方法、挑战与未来展望。
Annu Rev Biomed Data Sci. 2024 Aug;7(1):131-153. doi: 10.1146/annurev-biodatasci-102523-103640. Epub 2024 Jul 24.
5
Machine learning: its challenges and opportunities in plant system biology.机器学习:在植物系统生物学中的挑战与机遇。
Appl Microbiol Biotechnol. 2022 May;106(9-10):3507-3530. doi: 10.1007/s00253-022-11963-6. Epub 2022 May 16.
6
Multi-omics based artificial intelligence for cancer research.基于多组学的人工智能在癌症研究中的应用。
Adv Cancer Res. 2024;163:303-356. doi: 10.1016/bs.acr.2024.06.005. Epub 2024 Jul 9.
10
Single-cell sequencing techniques from individual to multiomics analyses.单细胞测序技术:从单组学到多组学分析。
Exp Mol Med. 2020 Sep;52(9):1419-1427. doi: 10.1038/s12276-020-00499-2. Epub 2020 Sep 15.

引用本文的文献

2
A unified analysis of atlas single-cell data.图谱单细胞数据的统一分析
Genome Res. 2025 May 2;35(5):1219-1233. doi: 10.1101/gr.279631.124.

本文引用的文献

2
Multiview Uncorrelated Locality Preserving Projection.多视图不相关局部保持投影
IEEE Trans Neural Netw Learn Syst. 2020 Sep;31(9):3442-3455. doi: 10.1109/TNNLS.2019.2944664. Epub 2019 Oct 24.
4
Omics Application of Bio-Hydrogen Production Through Green Alga .绿藻生物制氢的组学应用
Front Bioeng Biotechnol. 2019 Aug 21;7:201. doi: 10.3389/fbioe.2019.00201. eCollection 2019.
6
Machine and deep learning meet genome-scale metabolic modeling.机器学习和深度学习与基因组规模代谢建模相遇。
PLoS Comput Biol. 2019 Jul 11;15(7):e1007084. doi: 10.1371/journal.pcbi.1007084. eCollection 2019 Jul.
10
Multiomics resolution of molecular events during a day in the life of Chlamydomonas.解析衣藻生命一天中分子事件的多组学方法。
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2374-2383. doi: 10.1073/pnas.1815238116. Epub 2019 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验