Wang Tianyang, Li Xiumei, Liu Ruyu, Wang Meixi, Sun Junmei
Hangzhou Normal University, School of Information Science and Technology, Hangzhou, China.
J Med Imaging (Bellingham). 2025 May;12(3):034503. doi: 10.1117/1.JMI.12.3.034503. Epub 2025 May 23.
Early-stage pneumonia is not easily detected, leading to many patients missing the optimal treatment window. This is because segmenting lesion areas from CT images presents several challenges, including low-intensity contrast between the lesion and normal areas, as well as variations in the shape and size of lesion areas. To overcome these challenges, we propose a segmentation network called DECE-Net to segment the pneumonia lesions from CT images automatically.
The DECE-Net adds an extra encoder path to the U-Net, where one encoder path extracts the features of the original CT image with the attention multi-scale feature fusion module, and the other encoder path extracts the contour features in the CT contour image with the contour feature extraction module to compensate and enhance the boundary information that is lost in the downsampling process. The network further fuses the low-level features from both encoder paths through the feature fusion attention connection module and connects them to the upsampled high-level features to replace the skip connections in the U-Net. Finally, multi-point deep supervision is applied to the segmentation results at each scale to improve segmentation accuracy.
We evaluate the DECE-Net using four public COVID-19 segmentation datasets. The mIoU results for the four datasets are 80.76%, 84.59%, 84.41%, and 78.55%, respectively.
The experimental results indicate that the proposed DECE-Net achieves state-of-the-art performance, especially in the precise segmentation of small lesion areas.
早期肺炎不易被检测到,导致许多患者错过最佳治疗窗口。这是因为从CT图像中分割病变区域存在诸多挑战,包括病变与正常区域之间的低强度对比度,以及病变区域形状和大小的变化。为了克服这些挑战,我们提出了一种名为DECE-Net的分割网络,用于从CT图像中自动分割肺炎病变。
DECE-Net在U-Net的基础上增加了一条额外的编码器路径,其中一条编码器路径通过注意力多尺度特征融合模块提取原始CT图像的特征,另一条编码器路径通过轮廓特征提取模块提取CT轮廓图像中的轮廓特征,以补偿和增强在降采样过程中丢失的边界信息。该网络进一步通过特征融合注意力连接模块融合来自两条编码器路径的低级特征,并将它们连接到上采样后的高级特征,以取代U-Net中的跳跃连接。最后,对每个尺度的分割结果应用多点深度监督,以提高分割精度。
我们使用四个公开的COVID-19分割数据集对DECE-Net进行评估。四个数据集的mIoU结果分别为80.76%、84.59%、84.41%和78.55%。
实验结果表明,所提出的DECE-Net取得了领先的性能,特别是在小病变区域的精确分割方面。