Sarangi Tapan Kumar, Panda Rashmita, Kishan Bhagaban, Naik Kusha Kumar
P.G. Department of Physics, Berhampur University Odisha 760007 India
Jawaharlal Nehru University New Delhi India.
RSC Adv. 2025 May 23;15(22):17266-17276. doi: 10.1039/d5ra03245h. eCollection 2025 May 21.
This study explores the synthesis and characterization of europium-doped silver selenide (Eu-AgSe) nanoparticles along with their application in electrochemical studies. The nanoparticles are synthesized a hydrothermal method using silver, selenide and europium as precursors in the environment of octylamine solution. Comprehensive structural, morphological, and functional analyses are performed using X-ray diffraction (XRD), field-effect scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and Fourier transform infrared spectroscopy (FTIR). Electrochemical performance , in supercapacitors and glucose sensors, is assessed through electrochemical experiments like cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It has been observed that Europium doping significantly enhanced the specific capacitance, achieving 337.8 F g at a current density of 0.14 A g, with an energy density of 8.4 W h kg and a power density of 29.9 W kg. Additionally, the materials exhibited excellent cyclic stability, retaining 93% of their initial capacitance after 6000 cycles. Similarly, the sensitivity of the Eu-AgSe nanoparticles is calculated as 0.52 μA μMcm in the linear range having good stability, selectivity and reproducibility. These results highlight the potential of Eu-AgSe nanoparticles as a promising candidate for next-generation energy storage systems and glucose sensing applications.
本研究探索了铕掺杂硒化银(Eu-AgSe)纳米颗粒的合成、表征及其在电化学研究中的应用。纳米颗粒是在辛胺溶液环境中,以银、硒化物和铕为前驱体,采用水热法合成的。使用X射线衍射(XRD)、场效应扫描电子显微镜(FESEM)、高分辨率透射电子显微镜(HRTEM)和傅里叶变换红外光谱(FTIR)进行了全面的结构、形态和功能分析。通过循环伏安法(CV)、恒电流充放电(GCD)、计时电流法(CA)和电化学阻抗谱(EIS)等电化学实验,评估了其在超级电容器和葡萄糖传感器中的电化学性能。据观察,铕掺杂显著提高了比电容,在电流密度为0.14 A g时达到337.8 F g,能量密度为8.4 W h kg,功率密度为29.9 W kg。此外,该材料表现出优异的循环稳定性,在6000次循环后仍保留其初始电容的93%。同样,Eu-AgSe纳米颗粒在具有良好稳定性、选择性和重现性的线性范围内的灵敏度计算为0.52 μA μMcm。这些结果突出了Eu-AgSe纳米颗粒作为下一代储能系统和葡萄糖传感应用的有前途候选材料的潜力。