Jenkinson Charles G, Wood Tristan L
Faculty of Medicine and Dentistry, Charles Sturt University, Orange, AUS.
Faculty of Medicine, The University of Western Australia, Perth, AUS.
Cureus. 2025 May 21;17(5):e84523. doi: 10.7759/cureus.84523. eCollection 2025 May.
Aortic aneurysms present significant clinical challenges due to the risk of rupture associated with the abnormal dilation of the aorta. Computational fluid dynamics (CFD) analysis is an emerging, non-invasive method to analyse haemodynamic forces within aneurysmal regions. We present a detailed, reproducible workflow for the CFD analysis of aortic aneurysms based on cardiac-gated computed tomography (CT) data. Using a structured toolchain of open-source software, namely, Horos (Horos Project, Annapolis, MD, USA) for image preparation, Image Tool Kit-SNAP (ITK-SNAP) (University of Pennsylvania, Philadelphia, PA, USA) for segmentation, MeshLab (Istituto di Scienza e Tecnologie dell'Informazione-Consiglio Nazionale delle Ricerche (ISTI-CNR), Pisa, Italy) for mesh refinement, Blender (Blender Foundation, Amsterdam, Netherlands, https://www.blender.org) for boundary patching, OpenFOAM (OpenFOAM Foundation, London, UK) for CFD simulation, ParaView (Kitware, Inc., Clifton Park, NY, USA) for visualisation, and R (R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/) for statistical analysis, the methodology achieves high fidelity in modeling patient-specific flow conditions. Key stages of the workflow address segmentation accuracy, mesh quality, and boundary condition assignment, ensuring that the model captures physiological flow characteristics. This approach provides a valuable and accessible tool for clinicians and researchers, supporting assessments of haemodynamic risk factors in cardiovascular research. Our model aims to provide insights into wall shear stress (WSS), pressure distributions, and flow dynamics that may contribute to aneurysm progression and high-risk features.
由于主动脉异常扩张会带来破裂风险,主动脉瘤带来了重大的临床挑战。计算流体动力学(CFD)分析是一种新兴的非侵入性方法,用于分析动脉瘤区域内的血流动力学力。我们基于心脏门控计算机断层扫描(CT)数据,提出了一种用于主动脉瘤CFD分析的详细、可重复的工作流程。使用开源软件的结构化工具链,即用于图像准备的Horos(美国马里兰州安纳波利斯的Horos项目)、用于分割的图像工具包-SNAP(ITK-SNAP,美国宾夕法尼亚大学,费城)、用于网格细化的MeshLab(意大利比萨的信息科学与技术研究所-国家研究委员会(ISTI-CNR))、用于边界修补的Blender(荷兰阿姆斯特丹的Blender基金会,https://www.blender.org)、用于CFD模拟的OpenFOAM(英国伦敦的OpenFOAM基金会)、用于可视化的ParaView(美国纽约州克利夫顿帕克的Kitware公司)以及用于统计分析的R(奥地利维也纳的R统计计算基金会,https://www.R-project.org/),该方法在模拟患者特定血流状况时实现了高保真度。工作流程的关键阶段涉及分割精度、网格质量和边界条件分配,确保模型能够捕捉生理血流特征。这种方法为临床医生和研究人员提供了一个有价值且易于使用的工具,支持心血管研究中血流动力学风险因素的评估。我们的模型旨在深入了解壁面剪应力(WSS)、压力分布和血流动力学,这些可能有助于动脉瘤的进展和高危特征。