Suppr超能文献

利用多组分密度泛函理论进行精确的振动氢键位移预测。

Accurate vibrational hydrogen-bond shift predictions with multicomponent DFT.

作者信息

Gimferrer Martí, Hasecke Lukas, Bödecker Margarethe, Mata Ricardo A

机构信息

Institut für Physikalische Chemie, Georg-August Universität Göttingen Tammannstraße 6 37077 Göttingen Germany

出版信息

Chem Sci. 2025 May 20. doi: 10.1039/d5sc02165k.

Abstract

In this work we explore the use of multicomponent methods for the computational simulation of anharmonic OH vibrational shifts. Multicomponent methodologies have become popular over the last years, but still are limited in their application range. However, by enabling the simultaneous quantum treatment of protonic and electronic wave functions/densities, they hold promise for the treatment of anharmonic effects and proton vibrations in general. This potential has only been probed but not fully realized so far. This study investigates the performance of Nuclear-Electronic Orbital Density Functional Theory (NEO-DFT) in the prediction of water OH shifts upon complexation with organic molecules. We make use of the HyDRA database, expanded to 35 hydrogen-bonded monohydrates of small organic molecules, and evaluate a range of DFT functionals, both hybrid and double-hybrid. We introduce a robust prediction strategy based on common ingredients available when running conventional DFT and NEO-DFT calculations, which for the first time reduces the root mean square deviation (RMSD) values below 10 cm for the set. Double-hybrid functionals in combination with a DFT treatment of the proton of interest is found to be particularly promising. The new systems added to the HyDRA dataset are presented and used as an extra test to the methodology.

摘要

在这项工作中,我们探索了使用多组分方法对非谐OH振动位移进行计算模拟。在过去几年中,多组分方法已变得流行,但其应用范围仍然有限。然而,通过能够同时对质子和电子波函数/密度进行量子处理,它们有望总体上处理非谐效应和质子振动。到目前为止,这种潜力仅得到了探索但尚未完全实现。本研究调查了核 - 电子轨道密度泛函理论(NEO - DFT)在预测水与有机分子络合时的OH位移方面的性能。我们利用了HyDRA数据库,该数据库已扩展到35种小有机分子的氢键合一水合物,并评估了一系列DFT泛函,包括杂化泛函和双杂化泛函。我们基于在运行传统DFT和NEO - DFT计算时可用的常见要素引入了一种稳健的预测策略,该策略首次将该集合的均方根偏差(RMSD)值降低到10 cm以下。发现双杂化泛函与对感兴趣质子的DFT处理相结合特别有前景。展示了添加到HyDRA数据集中的新系统,并将其用作该方法的额外测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8b/12175543/11db9f1bbcaf/d5sc02165k-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验