Wendorf Michael D, Macintosh Christopher I
University of Utah, Salt Lake City, Utah.
AMIA Annu Symp Proc. 2025 May 22;2024:1225-1234. eCollection 2024.
This capstone project investigates the application of artificial intelligence (AI) techniques, specifically sentence embedding and k-means clustering using large language models, to address the challenge of policy library redundancy within a healthcare setting. The project aimed to demonstrate the viability of using AI-assisted tools in policy library management, targeting a 5% reduction in the overall policy library at a large academic healthcare system. By collaborating with the accreditation team and developing a Python-script prototype, the study showed that AI-assisted methods could significantly enhance efficiency and reduce labor in policy library management. Results indicate a potential 4% reduction in library size, underscoring the method's effectiveness and the opportunity for further optimization. This research contributes to the emerging field of AI in healthcare administration, offering a scalable model for improving policy library management processes in various healthcare contexts.
这个顶点项目研究了人工智能(AI)技术的应用,特别是使用大语言模型的句子嵌入和k均值聚类,以应对医疗保健环境中政策库冗余的挑战。该项目旨在证明在政策库管理中使用人工智能辅助工具的可行性,目标是在一个大型学术医疗系统中将整体政策库减少5%。通过与认证团队合作并开发一个Python脚本原型,该研究表明人工智能辅助方法可以显著提高政策库管理的效率并减少劳动力。结果表明库大小可能减少4%,突出了该方法的有效性以及进一步优化的机会。这项研究为医疗保健管理中新兴的人工智能领域做出了贡献,提供了一个可扩展的模型,用于改善各种医疗保健环境中的政策库管理流程。