Suppr超能文献

人工智能的群体健康视角。

A population health perspective on artificial intelligence.

作者信息

Lavigne Maxime, Mussa Fatima, Creatore Maria I, Hoffman Steven J, Buckeridge David L

机构信息

1 Surveillance Lab, McGill Clinical and Health Informatics, McGill University, Montreal, Quebec, Canada.

2 Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada.

出版信息

Healthc Manage Forum. 2019 Jul;32(4):173-177. doi: 10.1177/0840470419848428. Epub 2019 May 19.

Abstract

The burgeoning field of Artificial Intelligence (AI) has the potential to profoundly impact the public's health. Yet, to make the most of this opportunity, decision-makers must understand AI concepts. In this article, we describe approaches and fields within AI and illustrate through examples how they can contribute to informed decisions, with a focus on population health applications. We first introduce core concepts needed to understand modern uses of AI and then describe its sub-fields. Finally, we examine four sub-fields of AI most relevant to population health along with examples of available tools and frameworks. Artificial intelligence is a broad and complex field, but the tools that enable the use of AI techniques are becoming more accessible, less expensive, and easier to use than ever before. Applications of AI have the potential to assist clinicians, health system managers, policy-makers, and public health practitioners in making more precise, and potentially more effective, decisions.

摘要

新兴的人工智能(AI)领域有可能对公众健康产生深远影响。然而,为了充分利用这一机遇,决策者必须理解人工智能的概念。在本文中,我们描述了人工智能领域内的方法和领域,并通过实例说明它们如何有助于做出明智的决策,重点是人群健康应用。我们首先介绍理解人工智能现代应用所需的核心概念,然后描述其各个子领域。最后,我们研究了与人群健康最相关的人工智能的四个子领域,并列举了可用工具和框架的示例。人工智能是一个广泛而复杂的领域,但使人工智能技术得以应用的工具正变得比以往任何时候都更容易获取、成本更低且更易于使用。人工智能的应用有潜力帮助临床医生、卫生系统管理人员、政策制定者和公共卫生从业者做出更精确、可能更有效的决策。

相似文献

1
A population health perspective on artificial intelligence.人工智能的群体健康视角。
Healthc Manage Forum. 2019 Jul;32(4):173-177. doi: 10.1177/0840470419848428. Epub 2019 May 19.
8
Behind the scenes: A medical natural language processing project.幕后:一个医学自然语言处理项目。
Int J Med Inform. 2018 Apr;112:68-73. doi: 10.1016/j.ijmedinf.2017.12.003. Epub 2017 Dec 9.

引用本文的文献

本文引用的文献

2
Classification, Ontology, and Precision Medicine.分类、本体论与精准医学。
N Engl J Med. 2018 Oct 11;379(15):1452-1462. doi: 10.1056/NEJMra1615014.
5
How artificial intelligence is changing drug discovery.人工智能如何改变药物研发。
Nature. 2018 May;557(7707):S55-S57. doi: 10.1038/d41586-018-05267-x.
6
Knowledge-based automated planning for oropharyngeal cancer.基于知识的口咽癌自动规划。
Med Phys. 2018 Jul;45(7):2875-2883. doi: 10.1002/mp.12930. Epub 2018 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验