He Yongqun Oliver, Barisoni Laura, Rosenberg Avi Z, Robinson Peter, Diehl Alexander D, Chen Yichao, Phuong Jim, Hansen Jens, Herr Ii Bruce W, Börner Katy, Schaub Jennifer, Bonevich Nikki, Arnous Ghida, Boddapati Saketh, Zheng Jie, Alakwaa Fadhl, Sardar Pinaki, Duncan William D, Liang Chen, Valerius M Todd, Jain Sanjay, Iyengar Ravi, Himmelfarb Jonathan, Kretzler Matthias
University of Michigan, Ann Arbor, MI, USA.
Duke University, Durham, NC, USA.
AMIA Annu Symp Proc. 2025 May 22;2024:523-532. eCollection 2024.
Many data resources generate, process, store, or provide kidney related molecular, pathological, and clinical data. Reference ontologies offer an opportunity to support knowledge and data integration. The Kidney Precision Medicine Project (KPMP) team contributed to the representation and addition of 329 kidney phenotype terms to the Human Phenotype Ontology (HPO), and identified many subcategories of acute kidney injury (AKI) or chronic kidney disease (CKD). The Kidney Tissue Atlas Ontology (KTAO) imports and integrates kidney-related terms from existing ontologies (e.g., HPO, CL, and Uberon) and represents 259 kidney-related biomarkers. We have also developed a precision medicine metadata ontology (PMMO) to integrate 50 variables from KPMP and CZ CellxGene data resources and applied PMMO for integrative kidney data analysis. The gene expression profiles of kidney gene biomarkers were specifically analyzed under healthy control or AKI/CKD disease states. This work demonstrates how ontology-based approaches support multi-domain data and knowledge integration in precision medicine.
许多数据资源生成、处理、存储或提供与肾脏相关的分子、病理和临床数据。参考本体为支持知识和数据整合提供了契机。肾脏精准医学项目(KPMP)团队为人类表型本体(HPO)中329个肾脏表型术语的表示和添加做出了贡献,并确定了急性肾损伤(AKI)或慢性肾脏病(CKD)的许多子类别。肾脏组织图谱本体(KTAO)从现有本体(如HPO、CL和Uberon)中导入并整合与肾脏相关的术语,并表示259种与肾脏相关的生物标志物。我们还开发了一种精准医学元数据本体(PMMO),以整合来自KPMP和CZ CellxGene数据资源的50个变量,并将PMMO应用于肾脏综合数据分析。在健康对照或AKI/CKD疾病状态下,对肾脏基因生物标志物的基因表达谱进行了专门分析。这项工作展示了基于本体的方法如何支持精准医学中的多领域数据和知识整合。