Suppr超能文献

RealMedQA:一个包含现实临床问题的生物医学问答数据集试点。

RealMedQA: A pilot biomedical question answering dataset containing realistic clinical questions.

作者信息

Kell Gregory, Roberts Angus, Umansky Serge, Khare Yuti, Ahmed Najma, Patel Nikhil, Simela Chloe, Coumbe Jack, Rozario Julian, Griffiths Ryan-Rhys, Marshall Iain J

机构信息

King's College London, London, Greater London, United Kingdom.

Metadvice Ltd., London, Greater London, United Kingdom.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:590-599. eCollection 2024.

Abstract

Clinical question answering systems have the potential to provide clinicians with relevant and timely answers to their questions. Nonetheless, despite the advances that have been made, adoption of these systems in clinical settings has been slow. One issue is a lack of question-answering datasets which reflect the real-world needs of health professionals. In this work, we present RealMedQA, a dataset of realistic clinical questions generated by humans and an LLM. We describe the process for generating and verifying the QA pairs and assess several QA models on BioASQ and RealMedQA to assess the relative difficulty of matching answers to questions. We show that the LLM is more cost-efficient for generating "ideal" QA pairs. Additionally, we achieve a lower lexical similarity between questions and answers than BioASQ which provides an additional challenge to the top two QA models, as per the results. We release our code and our dataset publicly to encourage further research.

摘要

临床问答系统有潜力为临床医生提供与其问题相关且及时的答案。尽管如此,尽管已经取得了进展,但这些系统在临床环境中的采用速度一直很慢。一个问题是缺乏反映卫生专业人员现实世界需求的问答数据集。在这项工作中,我们展示了RealMedQA,这是一个由人类和语言模型生成的现实临床问题数据集。我们描述了生成和验证问答对的过程,并在BioASQ和RealMedQA上评估了几个问答模型,以评估将答案与问题匹配的相对难度。我们表明,语言模型在生成“理想”问答对方面更具成本效益。此外,根据结果,我们实现的问题与答案之间的词汇相似度低于BioASQ,这给前两个问答模型带来了额外的挑战。我们公开发布我们的代码和数据集,以鼓励进一步的研究。

相似文献

8
MedChatZH: A tuning LLM for traditional Chinese medicine consultations.医聊 ChatZH:一个用于中医咨询的调优大语言模型。
Comput Biol Med. 2024 Apr;172:108290. doi: 10.1016/j.compbiomed.2024.108290. Epub 2024 Mar 13.
10
Document Retrieval for Biomedical Question Answering with Neural Sentence Matching.用于生物医学问答的神经句子匹配文档检索
Proc Int Conf Mach Learn Appl. 2018 Dec;2018:194-201. doi: 10.1109/ICMLA.2018.00036. Epub 2019 Jan 17.

本文引用的文献

2
Large language models encode clinical knowledge.大语言模型编码临床知识。
Nature. 2023 Aug;620(7972):172-180. doi: 10.1038/s41586-023-06291-2. Epub 2023 Jul 12.
3
What Would it Take to get Biomedical QA Systems into Practice?如何将生物医学问答系统付诸实践?
Proc Conf Empir Methods Nat Lang Process. 2021 Nov;2021:28-41. doi: 10.18653/v1/2021.mrqa-1.3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验