Nie Wenbo, Wang Baojun, Wu Wei, Li Shikuo, Huang Fangzhi, Ma Wenle, Zhang Hui
School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China.
School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, P. R. China.
Small. 2025 Jul;21(27):e2503955. doi: 10.1002/smll.202503955. Epub 2025 May 26.
Bacterial cellulose (BC)-derived carbon nanofiber aerogel shave promising applications in the field of electromagnetic wave (EMW) absorption. However, the high permittivityinduced poor impedance matching and the single loss mechanism lead to weak EMW absorption performance. Assembling into the ordered structure can establish a continuous conductive network, thereby augmenting the conductive loss and enriching the loss mechanisms. Herein, an ordered structure carbon nanofiber aerogel anchored with FeCoNi medium entropy alloy (MEA) nanoparticles (CNA@FeCoNi) is fabricated via directional freeze-drying and hydrogen thermal reduction strategy. The incorporation of FeCoNi MEA nanoparticles can not only introduce magnetic loss but also enhance impedance matching by reducing the dielectric constants. In addition, FeCoNi MEA nanoparticles trigger strong polarization loss due to the lattice distortion arising from the multi-component composition. Consequently, the fabricated CNA@FeCoNi presents remarkable EMW absorption performances with the minimum reflection loss (RL) value of -56.7 dB at an ultra-low filler of 5 wt.% and the effective absorption bandwidth (EAB) reaches 5.28 GHz. Besides, radar cross-section (RCS) simulation analysis and infrared radiation (IR) images deliver excellent application potential for both civilian and military purposes.
细菌纤维素(BC)衍生的碳纳米纤维气凝胶在电磁波(EMW)吸收领域具有广阔的应用前景。然而,高介电常数导致阻抗匹配不佳,且单一损耗机制致使EMW吸收性能较弱。组装成有序结构可建立连续的导电网络,从而增强传导损耗并丰富损耗机制。在此,通过定向冷冻干燥和氢热还原策略制备了一种锚定有FeCoNi中熵合金(MEA)纳米颗粒的有序结构碳纳米纤维气凝胶(CNA@FeCoNi)。FeCoNi MEA纳米颗粒的引入不仅能引入磁损耗,还可通过降低介电常数来增强阻抗匹配。此外,由于多组分组成引起的晶格畸变,FeCoNi MEA纳米颗粒引发强烈的极化损耗。因此,所制备的CNA@FeCoNi具有卓越的EMW吸收性能,在5 wt.%的超低填料含量下,最小反射损耗(RL)值达到-56.7 dB,有效吸收带宽(EAB)达到5.28 GHz。此外,雷达散射截面(RCS)模拟分析和红外辐射(IR)图像显示出其在民用和军事领域均具有出色的应用潜力。