Suppr超能文献

用于优化电磁波吸收的 p-n 异质结中的锑杂交工程

Antimony-Hybridization Engineering in p-n Heterojunctions for Optimized Electromagnetic Wave Absorption.

作者信息

Yu Bowen, Jia Zirui, Lv Changpeng, Ma Guoshuai, Liu Xuehua, Lan Di, Zhang Siyuan, Gao Zhenguo, Zhu Zhijun, Wu Guanglei

机构信息

Shandong Key Laboratory of Low Dimensional Materials and Polymer Composites, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Anhui Provincial Engineering Research Center of Silicon-Based Materials, School of Material and Chemical Engineering, Bengbu University, Bengbu, 233030, P. R. China.

出版信息

Small. 2025 Jun;21(25):e2500918. doi: 10.1002/smll.202500918. Epub 2025 May 8.

Abstract

The Sb-hybridization strategy enables the precise construction of p-n heterojunctions, which significantly enhances the electromagnetic wave (EMW) absorption performance by optimizing the interface polarization. In this study, an innovative in situ ion-exchange method is developed to implement Sb hybridization, establishing built-in electric fields within CoS/SbS@CNFs that amplify the polarization relaxation loss. This structural design synergistically combines a carbon-skeleton-induced conductive network with the magnetic loss mechanisms of CoS, ultimately yielding an exceptional EMW absorber. The optimized composite demonstrates remarkable EMW attenuation capabilities, achieving a minimum reflection loss (RL) of -57.53 dB at 2 mm and an effective absorption bandwidth (EAB) of 7.28 GHz (covering the X-band (8-12 GHz) and Ku-band (12-18 GHz)). This study not only provides a novel strategy for designing advanced EMW absorbers but also highlights the significance of p-n heterojunction engineering for EMW absorption in functional composites.

摘要

锑杂化策略能够精确构建p-n异质结,通过优化界面极化显著提高电磁波(EMW)吸收性能。在本研究中,开发了一种创新的原位离子交换方法来实现锑杂化,在CoS/SbS@CNFs中建立内置电场,放大极化弛豫损耗。这种结构设计将碳骨架诱导的导电网络与CoS的磁损耗机制协同结合,最终产生了一种优异的EMW吸收体。优化后的复合材料表现出卓越的EMW衰减能力,在2 mm处实现了-57.53 dB的最小反射损耗(RL)和7.28 GHz的有效吸收带宽(EAB)(覆盖X波段(8-12 GHz)和Ku波段(12-18 GHz))。本研究不仅为设计先进的EMW吸收体提供了一种新策略,还突出了p-n异质结工程在功能复合材料EMW吸收方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验