Zhang Peng, Huang Siying, Chen Kuo, Liu Xiaoqi, Xu Yachao, Chai Yongming, Liu Yunqi, Pan Yuan
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China.
Nanomicro Lett. 2025 May 26;17(1):278. doi: 10.1007/s40820-025-01783-4.
Disrupting the symmetric electron distribution of porphyrin-like Fe single-atom catalysts has been considered as an effective way to harvest high intrinsic activity. Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites. Here, we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts (Fe-NS) by replacing one N atom with S atom. The high-curvature hollow carbon nanosphere substrate introduces 1.3% local compressive strain to Fe-N bonds and 1.5% tensile strain to Fe-S bonds, downshifting the d-band center and accelerating the kinetics of *OH reduction. Consequently, highly curved Fe-NS sites anchored on hollow carbon nanosphere (FeNS-HNS-20) exhibit negligible current loss, a high half-wave potential of 0.922 V vs. RHE and turnover frequency of 6.2 e s site, which are 53 mV more positive and 1.7 times that of flat Fe-N-S counterpart, respectively. More importantly, multiple operando spectroscopies monitored the dynamic optimization of strained Fe-NS sites into Fe-N sites, further mitigating the overadsorption of *OH intermediates. This work not only sheds new light on local microstrain-induced catalytic enhancement, but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations.
破坏卟啉类铁单原子催化剂的对称电子分布被认为是获得高本征活性的有效途径。了解由几何微应变控制的催化性能对于进一步优化此类高效位点非常有必要。在此,我们通过用硫原子取代一个氮原子,阐明了局部微应变在提高不对称铁单原子催化剂(Fe-NS)的本征活性和耐久性方面的关键作用。高曲率空心碳纳米球基底给铁-氮键引入了1.3%的局部压缩应变,给铁-硫键引入了1.5%的拉伸应变,使d带中心下移并加速了OH还原的动力学。因此,锚定在空心碳纳米球上的高曲率Fe-NS位点(FeNS-HNS-20)表现出可忽略不计的电流损失、相对于可逆氢电极0.922 V的高半波电位以及6.2 e s-1位点的周转频率,分别比平面铁-氮-硫对应物正53 mV和高1.7倍。更重要的是,多种原位光谱监测了应变Fe-NS位点向铁-氮位点的动态优化,进一步减轻了OH中间体的过度吸附。这项工作不仅为局部微应变诱导的催化增强提供了新的见解,也为通过几何构型优化高效不对称位点提供了一个合理的方向。