Mahmutoglu Mustafa Ahmed, Rastogi Aditya, Brugnara Gianluca, Vollmuth Philipp, Foltyn-Dumitru Martha, Sahm Felix, Pfister Stefan, Sturm Dominik, Bendszus Martin, Schell Marianne
Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Department of Neuroradiology, Bonn University Hospital, Bonn, Germany.
Eur Radiol. 2025 May 26. doi: 10.1007/s00330-025-11671-5.
MRI sequence classification becomes challenging in multicenter studies due to variability in imaging protocols, leading to unreliable metadata and requiring labor-intensive manual annotation. While numerous automated MRI sequence identification models are available, they frequently encounter the issue of domain shift, which detrimentally impacts their accuracy. This study addresses domain shift, particularly from adult to pediatric MRI data, by evaluating the effectiveness of pre-trained models under these conditions.
This retrospective and multicentric study explored the efficiency of a pre-trained convolutional (ResNet) and CNN-Transformer hybrid model (MedViT) to handle domain shift. The study involved training ResNet-18 and MedVit models on an adult MRI dataset and testing them on a pediatric dataset, with expert domain knowledge adjustments applied to account for differences in sequence types.
The MedViT model demonstrated superior performance compared to ResNet-18 and benchmark models, achieving an accuracy of 0.893 (95% CI 0.880-0.904). Expert domain knowledge adjustments further improved the MedViT model's accuracy to 0.905 (95% CI 0.893-0.916), showcasing its robustness in handling domain shift.
Advanced neural network architectures like MedViT and expert domain knowledge on the target dataset significantly enhance the performance of MRI sequence classification models under domain shift conditions. By combining the strengths of CNNs and transformers, hybrid architectures offer enhanced robustness for reliable automated MRI sequence classification in diverse research and clinical settings.
Question Domain shift between adult and pediatric MRI data limits deep learning model accuracy, requiring solutions for reliable sequence classification across diverse patient populations. Findings The MedViT model outperformed ResNet-18 in pediatric imaging; expert domain knowledge adjustment further improved accuracy, demonstrating robustness across diverse datasets. Clinical relevance This study enhances MRI sequence classification by leveraging advanced neural networks and expert domain knowledge to mitigate domain shift, boosting diagnostic precision and efficiency across diverse patient populations in multicenter environments.
在多中心研究中,由于成像协议的变异性,MRI序列分类变得具有挑战性,这导致元数据不可靠,并且需要耗费大量人力的手动标注。虽然有许多自动MRI序列识别模型,但它们经常遇到域偏移问题,这对其准确性产生不利影响。本研究通过评估预训练模型在这些条件下的有效性,解决了域偏移问题,特别是从成人到儿科MRI数据的域偏移。
这项回顾性多中心研究探讨了预训练卷积(ResNet)和CNN-Transformer混合模型(MedViT)处理域偏移的效率。该研究包括在成人MRI数据集上训练ResNet-18和MedVit模型,并在儿科数据集上对其进行测试,应用专家领域知识调整以考虑序列类型的差异。
与ResNet-18和基准模型相比,MedViT模型表现出卓越的性能,准确率达到0.893(95%CI 0.880-0.904)。专家领域知识调整进一步将MedViT模型的准确率提高到0.905(95%CI 0.893-0.916),展示了其在处理域偏移方面的稳健性。
像MedViT这样的先进神经网络架构以及目标数据集上的专家领域知识,在域偏移条件下显著提高了MRI序列分类模型的性能。通过结合卷积神经网络和Transformer的优势,混合架构为在不同研究和临床环境中进行可靠的自动MRI序列分类提供了更高的稳健性。
问题成人和儿科MRI数据之间的域偏移限制了深度学习模型的准确性,需要解决跨不同患者群体进行可靠序列分类的问题。发现MedViT模型在儿科成像中优于ResNet-18;专家领域知识调整进一步提高了准确率,证明了在不同数据集上的稳健性。临床意义本研究通过利用先进的神经网络和专家领域知识来减轻域偏移,增强了MRI序列分类,提高了多中心环境中不同患者群体的诊断精度和效率。