Suppr超能文献

从二分类到多分类:一种基于X射线图像的胸部疾病分类的两步混合卷积神经网络-视觉Transformer模型

From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images.

作者信息

Hadhoud Yousra, Mekhaznia Tahar, Bennour Akram, Amroune Mohamed, Kurdi Neesrin Ali, Aborujilah Abdulaziz Hadi, Al-Sarem Mohammed

机构信息

LAMIS Laboratory, Larbi Tebessi University, Tebessa 12002, Algeria.

College of Computer Science and Engineering, Taibah University, Medina 41477, Saudi Arabia.

出版信息

Diagnostics (Basel). 2024 Dec 6;14(23):2754. doi: 10.3390/diagnostics14232754.

Abstract

BACKGROUND/OBJECTIVES: Chest disease identification for Tuberculosis and Pneumonia diseases presents diagnostic challenges due to overlapping radiographic features and the limited availability of expert radiologists, especially in developing countries. The present study aims to address these challenges by developing a Computer-Aided Diagnosis (CAD) system to provide consistent and objective analyses of chest X-ray images, thereby reducing potential human error. By leveraging the complementary strengths of convolutional neural networks (CNNs) and vision transformers (ViTs), we propose a hybrid model for the accurate detection of Tuberculosis and for distinguishing between Tuberculosis and Pneumonia.

METHODS

We designed a two-step hybrid model that integrates the ResNet-50 CNN with the ViT-b16 architecture. It uses the transfer learning on datasets from for Pneumonia cases and datasets from for Tuberculosis cases. CNNs capture hierarchical structures in images, while ViTs, with their self-attention mechanisms, excel at identifying relationships between features. Combining these approaches enhances the model's performance on binary and multi-class classification tasks.

RESULTS

Our hybrid CNN-ViT model achieved a binary classification accuracy of 98.97% for Tuberculosis detection. For multi-class classification, distinguishing between Tuberculosis, viral Pneumonia, and bacterial Pneumonia, the model achieved an accuracy of 96.18%. These results underscore the model's potential in improving diagnostic accuracy and reliability for chest disease classification based on X-ray images.

CONCLUSIONS

The proposed hybrid CNN-ViT model demonstrates substantial potential in advancing the accuracy and robustness of CAD systems for chest disease diagnosis. By integrating CNN and ViT architectures, our approach enhances the diagnostic precision, which may help to alleviate the burden on healthcare systems in resource-limited settings and improve patient outcomes in chest disease diagnosis.

摘要

背景/目的:由于肺结核和肺炎疾病的胸部X光影像特征重叠,且专业放射科医生数量有限,尤其是在发展中国家,因此对这两种疾病进行胸部疾病识别面临诊断挑战。本研究旨在通过开发一种计算机辅助诊断(CAD)系统来应对这些挑战,该系统可对胸部X光图像提供一致且客观的分析,从而减少潜在的人为误差。通过利用卷积神经网络(CNN)和视觉Transformer(ViT)的互补优势,我们提出了一种混合模型,用于准确检测肺结核并区分肺结核和肺炎。

方法

我们设计了一种两步混合模型,将ResNet-50卷积神经网络与ViT-b16架构相结合。它对肺炎病例的数据集和肺结核病例的数据集进行迁移学习。卷积神经网络捕捉图像中的层次结构,而具有自注意力机制的视觉Transformer在识别特征之间的关系方面表现出色。结合这些方法可提高模型在二分类和多分类任务中的性能。

结果

我们的卷积神经网络-视觉Transformer混合模型在肺结核检测方面的二分类准确率达到了98.97%。对于区分肺结核、病毒性肺炎和细菌性肺炎的多分类任务,该模型的准确率达到了96.18%。这些结果凸显了该模型在提高基于X光图像的胸部疾病分类诊断准确性和可靠性方面的潜力。

结论

所提出的卷积神经网络-视觉Transformer混合模型在提高胸部疾病诊断CAD系统的准确性和鲁棒性方面显示出巨大潜力。通过整合卷积神经网络和视觉Transformer架构,我们的方法提高了诊断精度,这可能有助于减轻资源有限环境下医疗系统的负担,并改善胸部疾病诊断中的患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe4a/11639898/38234bad836d/diagnostics-14-02754-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验