Suppr超能文献

异构图上的异质感知表示学习

Heterophily-Aware Representation Learning on Heterogeneous Graphs.

作者信息

Li Jintang, Wei Zheng, Zhu Yuchang, Wu Ruofan, Zhang Huizhe, Chen Liang, Zheng Zibin

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 Sep;47(9):7852-7866. doi: 10.1109/TPAMI.2025.3573615.

Abstract

Real-world graphs are typically complex, exhibiting heterogeneity in the global structure, as well as strong heterophily within local neighborhoods. While a growing body of literature has revealed the limitations of graph neural networks (GNNs) in handling homogeneous graphs with heterophily, little work has been conducted on investigating the heterophily properties in the context of heterogeneous graphs. To bridge this research gap, we identify the heterophily in heterogeneous graphs using metapaths and propose two practical metrics to quantitatively describe the levels of heterophily. Our empirical investigations on real-world heterogeneous graphs have revealed that heterogeneous graph neural networks (HGNNs), which inherit many mechanisms from GNNs designed for homogeneous graphs, struggle to generalize to heterogeneous graphs with heterophily or low levels of homophily. To address the challenge, we present Hetero$^{2}$2Net, a heterophily-aware HGNN that incorporates masked metapath prediction and masked label prediction tasks to effectively and flexibly handle both homophilic and heterophilic heterogeneous graphs. We evaluate the performance of Hetero$^{2}$2Net on five real-world heterogeneous graph benchmarks with varying levels of heterophily. Experimental results demonstrate that Hetero$^{2}$2Net outperforms strong baselines in the semi-supervised node classification task. In particular, Hetero$^{2}$2Net scales to an industrial-scale commercial graph with 13 M nodes and 157 M edges, demonstrating its effectiveness in handling large and complex heterogeneous graphs.

摘要

现实世界中的图通常很复杂,在全局结构中表现出异质性,并且在局部邻域内存在很强的异质连接性。虽然越来越多的文献揭示了图神经网络(GNN)在处理具有异质连接性的同构图时的局限性,但在研究异构图背景下的异质连接性属性方面所做的工作很少。为了弥补这一研究差距,我们使用元路径识别异构图中的异质连接性,并提出两个实用指标来定量描述异质连接性的水平。我们对现实世界异构图的实证研究表明,从为同构图设计的GNN继承了许多机制的异构图神经网络(HGNN)难以推广到具有异质连接性或低水平同质连接性的异构图。为了应对这一挑战,我们提出了Hetero$^{2}$2Net,这是一种具有异质连接性感知的HGNN,它结合了掩码元路径预测和掩码标签预测任务,以有效且灵活地处理同质性和异质性的异构图。我们在五个具有不同异质连接性水平的现实世界异构图基准上评估了Hetero$^{2}$2Net的性能。实验结果表明,在半监督节点分类任务中,Hetero$^{2}$2Net优于强大的基线。特别是,Hetero$^{2}$2Net可以扩展到一个具有1300万个节点和1.57亿条边的工业规模商业图,证明了其在处理大型复杂异构图方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验