Suppr超能文献

基于自适应步长元路径的自监督异构图注意力模型

A Self-Supervised Heterogeneous Graph Attention Model Based on Adaptable Step-Size Metapaths.

作者信息

Teng Xiangyi, Zhong Minghao, Liu Jing

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jul 18;PP. doi: 10.1109/TNNLS.2025.3587020.

Abstract

Graphs are widely used to model networks in real-world applications, with heterogeneous graph neural networks gaining increasing attention in recent years. Existing methods generally rely on first-order or high-order neighbors to capture semantic relationships, where metapath-based approaches are the most popular ones. However, existing metapath-based models not only require predefined metapaths based on prior knowledge, but also lack the consideration of metapath sequence modeling. Additionally, labeled data are scarce in massive graph data, and existing self-supervised or semisupervised models heavily rely on data enhancement strategies and complex frameworks. To address these limitations, we propose a self-supervised heterogeneous graph attention model (HGAM) based on adaptable step-size metapaths. Our model requires no prior knowledge to select the type of metapath and can adaptively capture the specific step-size metapath with high importance. The adaptable step-size metapaths module not only considers the attention weight in different step sizes, but also pays attention to the changing trend of attention, which expands the receptive field of the model and integrates global information preferably. To alleviate labeled data scarcity, our model employs a dual contrastive learning strategy. HGAM learns global representations by contrasting a high-order meta-graph against nodes, while preserving local structure through a cross-view comparison of first-order and high-order semantics. Extensive experiments on three different types of tasks, including node classification, clustering, and link prediction, are conducted on real-world datasets. Experimental results demonstrate that HGAM achieves superior performance compared to state-of-the-art methods.

摘要

图在现实世界的应用中被广泛用于对网络进行建模,近年来异构图神经网络越来越受到关注。现有方法通常依赖一阶或高阶邻居来捕捉语义关系,其中基于元路径的方法是最流行的。然而,现有的基于元路径的模型不仅需要基于先验知识预定义元路径,而且缺乏对元路径序列建模的考虑。此外,在海量图数据中标记数据稀缺,现有的自监督或半监督模型严重依赖数据增强策略和复杂框架。为了解决这些局限性,我们提出了一种基于自适应步长元路径的自监督异构图注意力模型(HGAM)。我们的模型无需先验知识来选择元路径类型,并且能够自适应地捕捉具有高度重要性的特定步长元路径。自适应步长元路径模块不仅考虑不同步长下的注意力权重,还关注注意力的变化趋势,这扩大了模型的感受野并更好地整合了全局信息。为了缓解标记数据稀缺的问题,我们的模型采用了双重对比学习策略。HGAM通过将高阶元图与节点进行对比来学习全局表示,同时通过一阶和高阶语义的跨视图比较来保留局部结构。在真实世界数据集上针对包括节点分类、聚类和链接预测在内的三种不同类型的任务进行了广泛实验。实验结果表明,与现有方法相比,HGAM取得了优异的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验