Nishimura Rio, Yamashita Ken-Ichi
Department of Chemistry, Graduate School of Science, The University of Osaka, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), The University of Osaka, Suita, Osaka, 565-0871, Japan.
Chemistry. 2025 Jul 17;31(40):e202501123. doi: 10.1002/chem.202501123. Epub 2025 Jun 4.
Polythienylenemethylidenes (PTMs) are promising conjugated polymers for organic electronics owing to their narrow bandgaps and extended π-conjugation. However, their stereochemistry remains unexplored. In this study, methine-bridged trithiophene and trifuran analogs were synthesized to investigate stereochemistry and chalcogen bonding effects. The compounds were obtained as mixtures of ZZ, EZ(= ZE), and EE geometric isomers, established through detailed NMR analyses. At thermal equilibrium, the ZZ isomer predominated in trithiophene (ZZ:(EZ + ZE):EE = 58:35:6), whereas trifuran showed a near-statistical distribution. X-ray crystallography revealed intramolecular S···S chalcogen bonding in trithiophene with S···S distances (≈3.04 Å) shorter than van der Waals radii and C-S···S angles of 171°. Comprehensive conformer searches and DFT calculations not only validated the higher stability of the ZZ isomer in trithiophene but also provided calculated isomer distributions that closely matched the experimental values. Multi-faceted computational analysis (electron localization function (ELF), noncovalent interaction (NCI), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO)) confirmed the presence of these chalcogen-centered interactions and quantified their strength through lone pair (LP)(S)→σ*(S-C) donor-acceptor orbital interactions. Trithiophene exhibited a unique dual-chalcogen bonding mode in the ZZ configuration. These findings elucidate the role of chalcogen bonding in stabilizing ZZ-trithiophenes and contribute to designing PTMs with controlled stereochemistry for organic electronics applications.
聚噻吩亚甲基(PTMs)因其窄带隙和扩展的π共轭结构,是有机电子领域很有前景的共轭聚合物。然而,它们的立体化学尚未得到研究。在本研究中,合成了次甲基桥连的三噻吩和三呋喃类似物,以研究立体化学和硫属元素键合效应。通过详细的核磁共振分析确定,这些化合物是以ZZ、EZ(=ZE)和EE几何异构体的混合物形式获得的。在热平衡时,三噻吩中ZZ异构体占主导(ZZ:(EZ + ZE):EE = 58:35:6),而三呋喃呈现接近统计分布。X射线晶体学揭示了三噻吩分子内存在S···S硫属元素键,S···S距离(≈3.04 Å)短于范德华半径,C-S···S角度为171°。全面的构象搜索和密度泛函理论计算不仅验证了ZZ异构体在三噻吩中具有更高的稳定性,还提供了与实验值紧密匹配的计算异构体分布。多方面的计算分析(电子定位函数(ELF)、非共价相互作用(NCI)、分子中原子的量子理论(QTAIM)和自然键轨道(NBO))证实了这些以硫属元素为中心的相互作用的存在,并通过孤对电子(LP)(S)→σ*(S-C)供体-受体轨道相互作用对其强度进行了量化。三噻吩在ZZ构型中表现出独特的双硫属元素键合模式。这些发现阐明了硫属元素键合在稳定ZZ-三噻吩中的作用,并有助于设计具有可控立体化学的PTMs用于有机电子应用。