Abbas Ghulam, Ali Arshad, Mushtaq Zohaib, Rehman Ateeq Ur, Hussen Seada, Hamam Habib
Department of Electrical Engineering, The University of Lahore, Lahore, 54000, Pakistan.
Faculty of Computer and Information Systems, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
Sci Rep. 2025 May 26;15(1):18297. doi: 10.1038/s41598-025-03322-y.
Wind energy is becoming one of the most important elements toward the advancement of sustainable energy systems globally. The assessment of wind energy potential is critical to the optimization of resource application and improvement of technologies. This study focuses on fitting fourteen probability density functions (PDFs) to hourly wind speed data collected from six coastal cities of Pakistan: Gwadar, Jiwani, Karachi, Keti Bandar, Ormara, and Pasni, for the year 2023, measured at 10 m and 50 m heights. These selected distributions are Weibull, Rayleigh, Lognormal, Gamma, Normal, Generalized Extreme Value, Logistic, Nakagami, t Location-Scale, Extreme Value, Inverse Gaussian, Chi-Square, Pearson Type III, and Rician. Four goodness-of-fit (GoF) indices are employed to evaluate the performance of these distributions: root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R), and chi-squared (χ). These metrics give a clear report on each distribution's aptness to emulate the wind speed information. Observed and computed wind power density (WPD) values are also determined to investigate the application of fitted distribution functions for practical purposes. The inspection of the simulation results shows that GEV, Weibull, Nakagami, and Gamma PDFs proved to be the most promising PDFs for describing wind speed data at 10 m, whereas GEV (predominantly), Weibull, Normal, and Logistic PDFs for wind speed data at 50 m. Further investigation revealed that the GEV distribution consistently exhibited better fitting characteristics, followed closely by Weibull, Nakagami, and Gamma distributions, making them highly suitable for characterizing the wind speed and determining wind energy potential. The extensively used Weibull distribution is not always the first choice. Consequently, the results presented in the paper provide fundamental information about the usage of the resource and energy production for Pakistani coastal wind sites.
风能正成为全球可持续能源系统发展的最重要因素之一。风能潜力评估对于资源应用优化和技术改进至关重要。本研究聚焦于将14种概率密度函数(PDF)拟合到2023年从巴基斯坦六个沿海城市(瓜达尔、吉瓦尼、卡拉奇、凯蒂班达尔、奥尔马拉和帕斯尼)收集的每小时风速数据,这些数据是在10米和50米高度测量的。这些选定的分布包括威布尔分布、瑞利分布、对数正态分布、伽马分布、正态分布、广义极值分布、逻辑分布、纳卡伽米分布、t位置 - 尺度分布、极值分布、逆高斯分布、卡方分布、皮尔逊Ⅲ型分布和莱斯分布。采用四个拟合优度(GoF)指标来评估这些分布的性能:均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R)和卡方(χ)。这些指标清晰地报告了每种分布模拟风速信息的适用性。还确定了观测和计算的风能密度(WPD)值,以研究拟合分布函数在实际中的应用。对模拟结果的检查表明,广义极值分布(GEV)、威布尔分布、纳卡伽米分布和伽马分布的概率密度函数被证明是描述10米高度风速数据最有前景的分布,而对于50米高度的风速数据,广义极值分布(主要是)、威布尔分布、正态分布和逻辑分布的概率密度函数表现较好。进一步研究表明,广义极值分布始终表现出更好的拟合特性,其次是威布尔分布、纳卡伽米分布和伽马分布,这使得它们非常适合表征风速和确定风能潜力。广泛使用的威布尔分布并不总是首选。因此,本文给出的结果为巴基斯坦沿海风电场的资源利用和能源生产提供了基础信息。