Suppr超能文献

一种基于新型能量模式因子的优化方法,用于评估风力发电应用中的威布尔参数。

A novel energy pattern factor-based optimized approach for assessing Weibull parameters for wind power applications.

作者信息

Abbas Ghulam, Ali Arshad, Othman Mohamed Tahar Ben, Nawaz Muhammad Wasim, Rehman Ateeq Ur, Hamam Habib

机构信息

Department of Electrical Engineering, The University of Lahore, Lahore, 54000, Pakistan.

Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah, 42351, Saudi Arabia.

出版信息

Sci Rep. 2025 Jan 2;15(1):37. doi: 10.1038/s41598-024-80929-7.

Abstract

One of the green, clean, and environment-friendly sources of energy is wind energy. For the assessment of wind energy potential, the parameters of the probability distribution function (PDF), i.e., Weibull distribution (WD), that fits well with the wind speed data must be known. In this research, we proposed a novel optimized energy pattern factor method (NOEPFM) based on the trust-region-dogleg algorithm and applied it to wind speed data of four cities of the Southern region of Punjab, Pakistan, to determine WD parameters, i.e., shape k and scale c parameters. In order to authenticate the practicability of the proposed NOEPFM, it is compared with the other existing energy pattern factor (EPF)-based methods such as the energy pattern factor method (EPFM), Sathyajith's EPFM (EPFMS), and novel EPFM (NEPFM). The performance of NOEPFM is measured in terms of five goodness-of-fit indices, namely root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (R), coefficient of efficiency (CoE), and maximum absolute error (MaxAE). Numerical results reveal that the NOEPFM method was the best fit compared to the other EPFMs for all the considered wind speed datasets. This justifies the workability of the proposed NOEPFM and can serve as an enhanced approach for calculating wind power potential.

摘要

风能是绿色、清洁且环保的能源之一。为了评估风能潜力,必须了解与风速数据拟合良好的概率分布函数(PDF)的参数,即威布尔分布(WD)。在本研究中,我们提出了一种基于信赖域狗腿算法的新型优化能量模式因子方法(NOEPFM),并将其应用于巴基斯坦旁遮普省南部四个城市的风速数据,以确定WD参数,即形状参数k和尺度参数c。为了验证所提出的NOEPFM的实用性,将其与其他现有的基于能量模式因子(EPF)的方法进行比较,如能量模式因子方法(EPFM)、萨蒂亚吉特的EPFM(EPFMS)和新型EPFM(NEPFM)。NOEPFM的性能通过五个拟合优度指标来衡量,即均方根误差(RMSE)、平均绝对误差(MAE)、相关系数(R)、效率系数(CoE)和最大绝对误差(MaxAE)。数值结果表明,对于所有考虑的风速数据集,与其他EPFMs相比,NOEPFM方法拟合效果最佳。这证明了所提出的NOEPFM的可行性,并可作为计算风能潜力的一种改进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acdd/11695658/c61c5df55482/41598_2024_80929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验