Suppr超能文献

基于加权基因共表达网络分析(WGCNA)鉴定过江藤响应高温胁迫的关键模块和基因

Identification of key modules and genes in response to high-temperature stress in Platostoma palustre based on WGCNA.

作者信息

Li Xiufang, Fan Wei, Quan Changqian, Xu Meihua, Tang Danfeng

机构信息

Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.

College of Pharmacy, Guangxi Medical University, Nanning, 530200, China.

出版信息

BMC Plant Biol. 2025 May 24;25(1):695. doi: 10.1186/s12870-025-06686-5.

Abstract

Platostoma palustre (Blume) A. J. Paton is one of the important medicinal and edible plants in China, and it is widely cultivated in tropical and subtropical regions of southern China. In these areas, high-temperature stress (HTS) is often one of the unfavorable environmental factors affecting the growth and yield of P. palustre. Nevertheless, the molecular mechanism underlying the response of P. palustre to HTS remains unclear. In this study, we used two varieties of P. palustre, LSL and MDG, as experimental materials to identify key genes involved in the response of P. palustre to HTS by employing transcriptome sequencing technology, thereby revealing the molecular mechanism underlying its adaptation to HTS. The results showed that HTS significantly influenced the plant height, above-ground fresh weight, root fresh weight, root growth, chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid content of P. palustre plants. MDG exhibited stronger high-temperature tolerance compared to LSL. Under HTS, 8352 DEGs were up-regulated and 9201 DEGs were down-regulated in HT_LSL_vs_CK_LSL, while 5433 DEGs were up-regulated and 6325 DEGs were down-regulated in HT_MDG_vs_CK_MDG, suggesting a significant difference in gene expression levels between LSL and MDG under HTS. KEGG enrichment analysis showed the pathways possibly involved in HTS responses in P. palustre, such as plant hormone signal transduction, brassinosteroid biosynthesis, phenylpropanoid biosynthesis, pentose and glucuronate interconversions, diterpenoid biosynthesis, flavonoid biosynthesis, etc. Further weighted gene co-expression network analysis (WGCNA) identified 14 modules and 61 hub genes closely related to the response to HTS in P. palustre. The hub genes included peroxidase 51-like (TRINITY_DN34017_c0_g1), UDP-glucuronate 4-epimerase 1-like (GAE1, TRINITY_DN815_c0_g3), NAC domain-containing protein 1 (NAC, TRINITY_DN328_c0_g1), UGT73A13 (TRINITY_DN8437_c0_g2), universal stress protein 7 (USP7, TRINITY_DN6361_c0_g2), malonyl-coenzyme: anthocyanin 5-O-glucoside-6'''-O-malonyltransferase-like (5MaT1, TRINITY_DN3589_c0_g1), ent-kaurene synthase 5 (KSL5, TRINITY_DN5126_c0_g1), ABC transporter (TRINITY_DN39495_c0_g1, TRINITY_DN10383_c0_g1), etc. This study investigated the molecular mechanism of heat tolerance in P. palustre at the gene expression level, providing a scientific basis for heat-tolerant breeding of P. palustre.

摘要

过江藤(Platostoma palustre (Blume) A. J. Paton)是中国重要的药食两用植物之一,在中国南方热带和亚热带地区广泛种植。在这些地区,高温胁迫(HTS)常常是影响过江藤生长和产量的不利环境因素之一。然而,过江藤对高温胁迫响应的分子机制仍不清楚。在本研究中,我们以过江藤的两个品种LSL和MDG为实验材料,采用转录组测序技术鉴定参与过江藤对高温胁迫响应的关键基因,从而揭示其适应高温胁迫的分子机制。结果表明,高温胁迫显著影响过江藤植株的株高、地上鲜重、根鲜重、根系生长、叶绿素a、叶绿素b、叶绿素a + b以及类胡萝卜素含量。与LSL相比,MDG表现出更强的高温耐受性。在高温胁迫下,HT_LSL_vs_CK_LSL中有8352个差异表达基因(DEGs)上调,9201个DEGs下调,而在HT_MDG_vs_CK_MDG中有5433个DEGs上调,6325个DEGs下调,这表明在高温胁迫下LSL和MDG之间基因表达水平存在显著差异。KEGG富集分析显示了过江藤中可能参与高温胁迫响应的途径,如植物激素信号转导、油菜素内酯生物合成、苯丙烷类生物合成、戊糖和葡糖醛酸相互转化、二萜类生物合成、类黄酮生物合成等。进一步的加权基因共表达网络分析(WGCNA)确定了14个模块和61个与过江藤对高温胁迫响应密切相关的枢纽基因。这些枢纽基因包括过氧化物酶51样(TRINITY_DN34017_c0_g1)、UDP-葡糖醛酸4-表异构酶1样(GAE1,TRINITY_DN815_c0_g3)、含NAC结构域蛋白1(NAC,TRINITY_DN328_c0_g1)、UGT73A13(TRINITY_DN8437_c0_g2)、通用应激蛋白7(USP7,TRINITY_DN6361_c0_g2)、丙二酰辅酶A:花青素5-O-葡萄糖苷-6'''-O-丙二酰转移酶样(5MaT1,TRINITY_DN3589_c0_g1)、贝壳杉烯合酶5(KSL5,TRINITY_DN5126_c0_g1)、ABC转运蛋白(TRINITY_DN39495_c0_g1,TRINITY_DN10383_c0_g1)等。本研究在基因表达水平上探究了过江藤耐热性的分子机制,为过江藤耐热育种提供了科学依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验