Yin Yanping, Jia Sixiang, Zheng Jing, Wang Wei, Wang Ziwen, Lin Jiangbo, Lin Wenting, Feng Chao, Xia Shudong, Ge Weili
Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Dongdu Road, Linhai, Zhejiang Province, 317000, China.
Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, 317000, China.
BMC Med Imaging. 2025 May 26;25(1):186. doi: 10.1186/s12880-025-01740-y.
Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables.
In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed.
The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups.
LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.
左心耳(LAA)的结构重塑是心房颤动(AF)的特征,且LAA形态会影响射频导管消融(RFCA)的结果。在本研究中,我们旨在利用LAA形态特征、深度学习(DL)放射组学和临床变量开发并验证一个用于预测AF消融结果的模型。
在这项多中心回顾性研究中,分析了2016年1月至2022年12月期间在三家三级医院连续接受AF-RFCA治疗的480例患者,并随访至2023年12月。系统收集术前CT血管造影(CTA)图像和实验室数据。使用基于nnUNet的模型进行LAA分割,随后进行放射组学特征提取。Cox比例风险回归分析评估AF复发与LAA体积之间的关系。使用分层抽样将数据集随机分为训练组(70%)和验证组(30%)。开发了一个将LAA-DL放射组学与临床变量相结合的AF复发预测模型。
该队列的中位随访时间为22个月(四分位间距15-32),103例患者(21.5%)发生AF复发。nnUNet分割模型的Dice系数为0.89。多变量分析显示,LAA体积每增加一个单位,风险增加5.8%(调整后风险比1.058,95%置信区间1.021-1.095;p = 0.002)。将LAA-DL放射组学与临床变量相结合的模型在测试集中的曲线下面积为0.92(95%置信区间0.87-0.96),在各亚组中均保持稳健的预测性能。
LAA形态和体积与AF-RFCA结果密切相关。我们开发了一个LAA分割网络和一个将DL放射组学与临床变量相结合的预测模型,以估计AF复发的概率。