Suppr超能文献

使用量化图神经网络模型增强分子性质预测。

Enhancing molecular property prediction with quantized GNN models.

作者信息

Rasool Areen, Ul Rahman Jamshaid, Uwitije Rongin

机构信息

Abdus Salam School of Mathematical Sciences, Government College University Lahore, Lahore, 54600, Pakistan.

Department of Mathematics, College of Science and Technology, School of Science, University of Rwanda, KN 7 Ave, Kigali, 3900, Rwanda.

出版信息

J Cheminform. 2025 May 26;17(1):81. doi: 10.1186/s13321-025-00989-3.

Abstract

Efficient and reliable prediction of molecular properties, such as water solubility, hydration free energy, lipophilicity, and quantum mechanical properties, is essential for rational compound design in the chemical and pharmaceutical industries. While Graph Neural Networks (GNNs) have significantly advanced molecular property prediction tasks, their high memory footprint, computational demands, and inference latency are often overlooked. These challenges hinder the deployment of property prediction models on resource-constrained devices such as smartphones and IoT devices. Therefore, optimizing storage, reducing resource consumption, and improving inference speed are crucial. This paper presents a systematic approach to molecular networks by integrating GNN models with the DoReFa-Net quantization algorithm. The proposed method aims to enhance computational efficiency while maintaining predictive performance, enabling lightweight yet effective models suitable for molecular task. The study investigates the impact of different bitwidth quantization levels on model performance, using metrics such as RMSE and MAE. Results show that, for physical chemistry datasets, the effectiveness of quantization is highly dependent on the model architecture. Notably, the quantum mechanical dipole moment task maintains strong performance up to 8-bit precision, achieving similar or slightly better results. However, extreme quantization, particularly at 2-bit precision, severely degrades performance, highlighting the limitations of aggressive compression.

摘要

高效且可靠地预测分子性质,如水溶性、水合自由能、亲脂性和量子力学性质,对于化学和制药行业的合理化合物设计至关重要。虽然图神经网络(GNN)在分子性质预测任务方面取得了显著进展,但其高内存占用、计算需求和推理延迟却常常被忽视。这些挑战阻碍了性质预测模型在智能手机和物联网设备等资源受限设备上的部署。因此,优化存储、减少资源消耗和提高推理速度至关重要。本文提出了一种将GNN模型与DoReFa-Net量化算法相结合的分子网络系统方法。所提出的方法旨在在保持预测性能的同时提高计算效率,从而实现适用于分子任务的轻量级且有效的模型。该研究使用均方根误差(RMSE)和平均绝对误差(MAE)等指标,研究了不同比特宽度量化水平对模型性能的影响。结果表明,对于物理化学数据集,量化的有效性高度依赖于模型架构。值得注意的是,量子力学偶极矩任务在高达8位精度时仍保持强大性能,取得了相似或略好的结果。然而,极端量化,特别是在2位精度时,会严重降低性能,凸显了激进压缩的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验