Suppr超能文献

使用COSMO筛选电荷密度表示表面活性剂以通过物理信息神经网络(PINN)预测吸附等温线。

Surfactant representation using COSMO screened charge density for adsorption isotherm prediction using Physics-Informed Neural Network (PINN).

作者信息

Alimin Achmad Anggawirya, Srasamran Kattariya, Yuenyong Wanutchaya, Charoensaeng Ampira, Shiau Bor-Jier, Suriyapraphadilok Uthaiporn

机构信息

The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.

Center of Excellence On Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok, Thailand.

出版信息

J Cheminform. 2025 May 26;17(1):84. doi: 10.1186/s13321-025-01027-y.

Abstract

Predicting surfactant adsorption using the currently available isotherm model is limited to one or two independent variables: equilibrium concentration and temperature. This study aims to develop an adsorption model that includes molecular features, testing conditions, and solid properties in the model. A Physics-Informed Neural Network (PINN) was structured by integrating adsorption isotherm into artificial neural networks (ANN). The model was trained using a dataset containing 56 adsorption isotherms and 20 types of anionic and nonionic surfactants under various conditions with sand and silica oxide as their solids. The surfactants were quantified using sets of descriptors generated from molecular counting, charge distribution, and Conductor-like Screening Model (COSMO) screened charge density. The COSMO-screened charge density descriptors provide the highest accuracy in representing the surfactant molecule. The interpretation of molecular structure effect and surfactant-solid interaction described using COSMO-screened charge density showed that adsorption between the surfactant and solid media involves hydrogen bonding and hydrophobic interaction. The PINN model achieves high accuracy with 93% training and 85% validation with fivefold cross-validation. Later, the model was evaluated and used to generate an adsorption isotherm and predict unseen surfactant adsorption. Adsorption prediction with unseen surfactants showed high accuracy with the surfactant for familiar structure (RMSE 0.07 mg/g) and promising profile for the whole new structure (RMSE 2.95 mg/g). Scientific contribution This study advances the field by integrating COSMO-screened charge density descriptors into a physics-informed deep learning model to predict surfactant adsorption isotherms, accounting for molecular features, testing conditions, and solid properties. The incorporation of COSMO-screened charge density offers a novel approach to accurately represent surfactant molecules, enabling accurate prediction of their adsorption behavior. This approach extends conventional models, which are often limited to empirical parameters or fewer variables. This physics-informed framework significantly enhances the understanding of surfactant-solid interactions and offers a robust predictive tool for optimizing surfactant formulations, aiming to minimize adsorption losses in chemical enhanced oil recovery and environmental remediation.

摘要

使用当前可用的等温线模型预测表面活性剂吸附仅限于一两个自变量

平衡浓度和温度。本研究旨在开发一种吸附模型,该模型在模型中纳入分子特征、测试条件和固体性质。通过将吸附等温线集成到人工神经网络(ANN)中构建了物理信息神经网络(PINN)。该模型使用一个数据集进行训练,该数据集包含56条吸附等温线以及在各种条件下以沙子和氧化硅为固体的20种阴离子和非离子表面活性剂。使用从分子计数、电荷分布和类导体屏蔽模型(COSMO)筛选的电荷密度生成的描述符集对表面活性剂进行量化。COSMO筛选的电荷密度描述符在表示表面活性剂分子方面提供了最高的准确性。使用COSMO筛选的电荷密度描述的分子结构效应和表面活性剂 - 固体相互作用的解释表明,表面活性剂与固体介质之间的吸附涉及氢键和疏水相互作用。PINN模型通过五重交叉验证在训练中达到93%的准确率,在验证中达到85%的准确率,实现了高精度。随后,对该模型进行评估并用于生成吸附等温线和预测未见过的表面活性剂吸附。对未见过的表面活性剂的吸附预测显示,对于结构熟悉的表面活性剂具有较高的准确率(均方根误差为0.07 mg/g),对于全新结构的表面活性剂也有良好的表现(均方根误差为2.95 mg/g)。科学贡献 本研究通过将COSMO筛选的电荷密度描述符集成到物理信息深度学习模型中以预测表面活性剂吸附等温线,考虑分子特征、测试条件和固体性质,推动了该领域的发展。纳入COSMO筛选的电荷密度提供了一种准确表示表面活性剂分子的新方法,能够准确预测其吸附行为。这种方法扩展了传统模型,传统模型通常限于经验参数或较少的变量。这种物理信息框架显著增强了对表面活性剂 - 固体相互作用的理解,并为优化表面活性剂配方提供了强大的预测工具,旨在最大限度地减少化学强化采油和环境修复中的吸附损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c0a/12107870/414287ca1aeb/13321_2025_1027_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验