Lee Hye-Jin, Lee Na Kyeong, Kim Jisun, Kim Jungbum, Seo Donghyuk, Shin Ha Eun, Kim Jongsu, Ahn June Hong, Kim Se-Na, Kim Hong Sook, Park Juwon, Park Wooram, Hong Kyung Soo, Park Chun Gwon, Lee Wonhwa
Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Department of Biomedical Engineering, Institute for Cross-Disciplinary Studies (ICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
J Nanobiotechnology. 2025 May 26;23(1):381. doi: 10.1186/s12951-025-03421-y.
Pulmonary fibrosis, a major complication of severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection (PASC), is driven by excessive neutrophil activation and the formation of neutrophil extracellular trap (NET).
This study presents a sequential nanoparticle-based therapy combining DNase-I-loaded polydopamine nanoparticles (DNase-I@PDA NPs) with Sivelestat-encapsulated PLGA nanoparticles (Siv@PLGA NPs) to target both NETs and neutrophil elastase (NE) activity. DNase-I@PDA NPs were aerosolized to the lungs, facilitating NET clearance and reducing the fibrotic microenvironment, followed by intravenous administration of Siv@PLGA NPs to inhibit NE activity and prevent neutrophil hyperactivation. In a murine model of lipopolysaccharide (LPS)-induced pulmonary fibrosis, this dual approach significantly decreased fibrotic lesions, collagen deposition, and myofibroblast activation. Notably, treatment with the nanoparticles led to substantial improvements in pulmonary function. In neutrophils isolated from COVID-19 patients, the combined nanoparticle therapy reduced circulating cell-free DNA, NET, NE, and myeloperoxidase (MPO) levels, while enhancing neutrophil viability and reducing inflammatory responses.
These findings highlight the efficacy of DNase-I@PDA NPs and Siv@PLGA NPs in addressing both acute inflammation and chronic fibrosis by simultaneously targeting NET formation and neutrophil hyperactivation. This dual nanoparticle therapy represents a promising clinical strategy for treating COVID-19-associated pulmonary complications, including PASC, by preventing long-term fibrotic progression and promoting lung recovery.
肺纤维化是重症新型冠状病毒肺炎(COVID-19)和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染后急性后遗症(PASC)的主要并发症,由中性粒细胞过度活化和中性粒细胞胞外陷阱(NET)形成所驱动。
本研究提出了一种基于纳米颗粒的序贯疗法,将负载脱氧核糖核酸酶I(DNase-I)的聚多巴胺纳米颗粒(DNase-I@PDA NPs)与包裹西维来司他的聚乳酸-羟基乙酸共聚物纳米颗粒(Siv@PLGA NPs)联合使用,以靶向NET和中性粒细胞弹性蛋白酶(NE)活性。将DNase-I@PDA NPs雾化至肺部,促进NET清除并减少纤维化微环境,随后静脉注射Siv@PLGA NPs以抑制NE活性并防止中性粒细胞过度活化。在脂多糖(LPS)诱导的小鼠肺纤维化模型中,这种双重方法显著减少了纤维化病变、胶原沉积和成肌纤维细胞活化。值得注意的是,纳米颗粒治疗使肺功能有了实质性改善。在从COVID-19患者分离的中性粒细胞中,联合纳米颗粒疗法降低了循环无细胞DNA、NET、NE和髓过氧化物酶(MPO)水平,同时提高了中性粒细胞活力并减少了炎症反应。
这些发现突出了DNase-I@PDA NPs和Siv@PLGA NPs通过同时靶向NET形成和中性粒细胞过度活化来解决急性炎症和慢性纤维化的疗效。这种双重纳米颗粒疗法是一种有前景的临床策略,可通过预防长期纤维化进展和促进肺恢复来治疗与COVID-19相关的肺部并发症,包括PASC。