Hegedűs Mihály, Dadkhah Mehdi, Dávid Lóránt Dénes
Department of Finance and Accounting, Tomori Pál College, Budapest, Hungary.
Chamber of Hungarian Auditors, Budapest, Hungary.
Diagnosis (Berl). 2025 May 22. doi: 10.1515/dx-2025-0043.
The challenges posed by questionable journals to academia are very real, and being able to detect hijacked journals would be valuable to the research community. Using an artificial intelligence (AI) chatbot may be a promising approach to early detection. The purpose of this research is to analyze and benchmark the performance of different AI chatbots in identifying hijacked medical journals.
This study utilized a dataset comprising 21 previously identified hijacked journals and 10 newly detected hijacked journals, alongside their respective legitimate versions. ChatGPT, Gemini, Copilot, DeepSeek, Qwen, Perplexity, and Claude were selected for benchmarking. Three question types were developed to assess AI chatbots' performance in providing information about hijacked journals, identifying hijacked websites, and verifying legitimate ones.
The results show that current AI chatbots can provide general information about hijacked journals, but cannot reliably identify either real or hijacked journal titles. While Copilot performed better than others, it was not error-free.
Current AI chatbots are not yet reliable for detecting hijacked journals and may inadvertently promote them.
问题期刊给学术界带来的挑战非常现实,能够检测出被劫持的期刊对研究界将很有价值。使用人工智能(AI)聊天机器人可能是早期检测的一种有前景的方法。本研究的目的是分析和评估不同AI聊天机器人在识别被劫持的医学期刊方面的性能。
本研究使用了一个数据集,该数据集包括21种先前确定的被劫持期刊和10种新检测到的被劫持期刊及其各自的合法版本。选择了ChatGPT、Gemini、Copilot、DeepSeek、Qwen、Perplexity和Claude进行基准测试。开发了三种问题类型,以评估AI聊天机器人在提供有关被劫持期刊的信息、识别被劫持网站以及验证合法网站方面的性能。
结果表明,当前的AI聊天机器人可以提供有关被劫持期刊的一般信息,但无法可靠地识别真实或被劫持的期刊标题。虽然Copilot的表现优于其他机器人,但也并非没有错误。
当前的AI聊天机器人在检测被劫持期刊方面尚不可靠,可能会无意中推广这些期刊。