Meyer Alida, Schedler Benno, Fitter Jörg
RWTH Aachen University, I. Physikalisches Institut (IA), AG Biophysik, 52074, Aachen, Germany.
ER-C-3 Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
Chembiochem. 2025 Aug 22;26(15):e202500283. doi: 10.1002/cbic.202500283. Epub 2025 Jul 24.
Due to the extreme sensitivity and the intrinsic selectivity of fluorescence techniques, high-affinity binding can be measured even at extremely low molecule concentrations in the picomolar range. In particular, modern advanced techniques with fluorescence microscopes have provided considerable methodological advancements in recent years. Here, a brief description of the basic physical principles of fluorescence detection and its experimental measurement setups are provided. For interacting biomolecules in solution, confocal fluorescence microscopy enables some very effective approaches to characterize binding in complex sample environments and with small sample consumption. In addition to standard techniques with bulk samples in classical spectrometers, applications with single-molecule Förster resonance energy transfer, two-color coincidence detection, and fluorescence correlation spectroscopy are presented. The strength of the more advanced techniques lies in their broad applicability, ranging from fluorescence-based genetically encoded biosensors for use in living cells to the high controllability in the measurement of binding curves even at very low molecule concentrations. The advantages and limitations of the individual techniques are compared and recent state-of-the-art applications are discussed.
由于荧光技术具有极高的灵敏度和固有的选择性,即使在皮摩尔范围内的极低分子浓度下也能测量高亲和力结合。特别是,近年来配备荧光显微镜的现代先进技术取得了相当大的方法学进展。在此,简要介绍荧光检测的基本物理原理及其实验测量装置。对于溶液中的相互作用生物分子,共聚焦荧光显微镜提供了一些非常有效的方法,可在复杂的样品环境中以少量样品消耗来表征结合。除了经典光谱仪中使用大量样品的标准技术外,还介绍了单分子Förster共振能量转移、双色符合检测和荧光相关光谱的应用。更先进技术的优势在于其广泛的适用性,从用于活细胞的基于荧光的基因编码生物传感器到即使在极低分子浓度下测量结合曲线时的高可控性。比较了各技术的优缺点,并讨论了最新的前沿应用。