Suppr超能文献

用于预后预测的回归模型:优势、问题及建议的解决方案。

Regression models for prognostic prediction: advantages, problems, and suggested solutions.

作者信息

Harrell F E, Lee K L, Matchar D B, Reichert T A

出版信息

Cancer Treat Rep. 1985 Oct;69(10):1071-77.

PMID:4042087
Abstract

Multiple regression models have wide applicability in predicting the outcome of patients with a variety of diseases. However, many researchers are using such models without validating the necessary assumptions. All too frequently, researchers also "overfit" the data by developing models using too many predictor variables and insufficient sample sizes. Models developed in this way are unlikely to stand the test of validation on a separate patient sample. Without attempting such a validation, the researcher remains unaware that overfitting has occurred. When the ratio of the number of patients suffering endpoints to the number of potential predictors is small (say less than 10), data reduction methods are available that can greatly improve the performance of regression models. Regression models can make more accurate predictions than other methods such as stratification and recursive partitioning, when model assumptions are thoroughly examined; steps are taken (ie, choosing another model or transforming the data) when assumptions are violated; and the method of model formulation does not result in overfitting the data.

摘要

多元回归模型在预测各种疾病患者的预后方面具有广泛的适用性。然而,许多研究人员在使用此类模型时并未验证必要的假设。研究人员也常常通过使用过多的预测变量和不足的样本量来开发模型,从而使数据“过度拟合”。以这种方式开发的模型不太可能经受住对另一个患者样本进行验证的考验。如果不尝试进行这种验证,研究人员将仍然不知道已经发生了过度拟合。当发生终点事件的患者数量与潜在预测变量的数量之比很小时(例如小于10),可以使用数据缩减方法,这些方法可以大大提高回归模型的性能。当对模型假设进行全面检查时;当假设被违反时采取措施(即选择另一个模型或对数据进行转换);并且模型构建方法不会导致数据过度拟合时,回归模型可以比其他方法(如分层和递归划分)做出更准确的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验