Suppr超能文献

使用Cu-Cys-GSH纳米颗粒的手性依赖性氧化还原电容生物传感器用于超灵敏HO检测

Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive HO Detection.

作者信息

Yilmaz Aydin Duygu, Wu Jie Jayne, Chen Jiangang

机构信息

Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA.

Department of Bioengineering, Malatya Turgut Ozal University, 44210 Malatya, Türkiye.

出版信息

Biosensors (Basel). 2025 May 14;15(5):315. doi: 10.3390/bios15050315.

Abstract

Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (HO). The detection mechanism leverages a Fenton-like reaction, where HO interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu and Cu ions. These redox processes induce changes in the sensor's surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for HO detection. The sensor's practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems.

摘要

通过半胱氨酸(Cys)和谷胱甘肽(GSH)与铜离子自组装形成的硫醇铜纳米结构,由于其结构稳定性和化学功能性,为氧化还原活性应用提供了一个多功能平台。在本研究中,合成了Cu-Cys-GSH纳米颗粒,并将其用于开发一种用于超低浓度过氧化氢(HO)检测的电容式生物传感器。检测机制利用了类似芬顿反应,其中HO与Cu-Cys-GSH纳米颗粒相互作用,通过Cu和Cu离子之间的氧化还原循环产生羟基自由基(·OH)。这些氧化还原过程引起传感器表面电荷和介电性能的变化,从而在金叉指电极(IDE)上实现高灵敏度的电容传感。通过合成含有L-和D-半胱氨酸对映体的纳米颗粒,研究了手性对传感性能的影响。对比分析表明,半胱氨酸的立体化学影响催化活性和传感器响应,其中Cu-L-Cys-GSH纳米颗粒表现出优异的性能。具体而言,该生物传感器的线性检测范围为1.0 fM至1.0 pM,超灵敏检测限为21.8 aM,优于许多现有的HO检测方法。使用牛奶和唾液样本进一步验证了该传感器的实际性能,回收率高,证实了其在实际应用中的稳健性和准确性。本研究提供了一个与可持续医疗实践兼容的一次性、低成本传感平台,并便于轻松集成到即时诊断系统中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9598/12110360/b8ba75e171fb/biosensors-15-00315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验