Pan Zhipeng, Xu Shijun, Guan Xiang, Wang Zhihong, Qi Zhenghai, Ye Xiangrui, Dong Jianyang, Yao Yongming, Mu Zhengzhi
School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China.
Shanghai Aerospace Equipment Manufacturer Co., Ltd., Shanghai 200245, China.
Biomimetics (Basel). 2025 May 16;10(5):322. doi: 10.3390/biomimetics10050322.
This study introduces an innovative annular sealing groove design inspired by the hierarchical structure of octopus suckers, addressing the limitations of conventional seals under extreme conditions in aerospace engineering. Using finite element analysis, eight bionic configurations with varying groove parameters (width, depth, number) were systematically evaluated under cryogenic (-196.25 °C) and high-pressure (2 MPa) scenarios. Results show that the optimized bionic6 configuration (seven grooves, 0.4 mm width, 0.4 mm depth) achieved a 21.71% improvement in average von Mises stress compared to the original design, demonstrating enhanced leakage resistance. Parameter interaction analysis revealed groove number as the most significant factor affecting performance, followed by width, while depth showed minimal influence. The hierarchical groove architecture effectively mimicked the multi-level sealing mechanism of octopus suckers, reducing leakage paths and improving adaptability to irregular surfaces. This work bridges biological inspiration and engineering application, providing a scalable solution for extreme environments. The identified optimal parameters lay a theoretical foundation for designing high-performance seals in aerospace, cryogenic storage, and advanced manufacturing.
本研究引入了一种受章鱼吸盘分层结构启发的创新型环形密封槽设计,以解决航空航天工程中极端条件下传统密封件的局限性。利用有限元分析,在低温(-196.25°C)和高压(2 MPa)场景下系统评估了八种具有不同槽参数(宽度、深度、数量)的仿生构型。结果表明,优化后的仿生6构型(七个槽,0.4毫米宽,0.4毫米深)与原始设计相比,平均冯·米塞斯应力提高了21.71%,显示出增强的抗泄漏能力。参数相互作用分析表明,槽的数量是影响性能的最重要因素,其次是宽度,而深度的影响最小。分层槽结构有效地模仿了章鱼吸盘的多级密封机制,减少了泄漏路径,提高了对不规则表面的适应性。这项工作架起了生物启发与工程应用之间的桥梁,为极端环境提供了一种可扩展的解决方案。所确定的最佳参数为航空航天、低温储存和先进制造中高性能密封件的设计奠定了理论基础。