Paz Álex, Crawford Broderick, Monfroy Eric, Barrera-García José, Peña Fritz Álvaro, Soto Ricardo, Cisternas-Caneo Felipe, Yáñez Andrés
Escuela de Ingeniería en Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile.
Laboratoire d'Étude et de Recherche en Informatique d'Angers (LERIA), Université d' Angers, 49000 Angers, France.
Biomimetics (Basel). 2025 May 17;10(5):326. doi: 10.3390/biomimetics10050326.
Credit risk assessment plays a critical role in financial risk management, focusing on predicting borrower default to minimize losses and ensure compliance. This study systematically reviews 23 empirical articles published between 2019 and 2023, highlighting the integration of machine learning and optimization techniques, particularly bio-inspired metaheuristics, for feature selection in individual credit risk assessment. These nature-inspired algorithms, derived from biological and ecological processes, align with bio-inspired principles by mimicking natural intelligence to solve complex problems in high-dimensional feature spaces. Unlike prior reviews that adopt broader scopes combining corporate, sovereign, and individual contexts, this work focuses exclusively on methodological strategies for individual credit risk. It categorizes the use of machine learning algorithms, feature selection methods, and metaheuristic optimization techniques, including genetic algorithms, particle swarm optimization, and biogeography-based optimization. To strengthen transparency and comparability, this review also synthesizes classification performance metrics-such as accuracy, AUC, F1-score, and recall-reported across benchmark datasets. Although no unified experimental comparison was conducted due to heterogeneity in study protocols, this structured summary reveals consistent trends in algorithm effectiveness and evaluation practices. The review concludes with practical recommendations and outlines future research directions to improve fairness, scalability, and real-time application in credit risk modeling.
信用风险评估在金融风险管理中起着关键作用,重点在于预测借款人违约以最小化损失并确保合规。本研究系统回顾了2019年至2023年间发表的23篇实证文章,强调了机器学习和优化技术(特别是受生物启发的元启发式算法)在个人信用风险评估特征选择中的整合。这些受自然启发的算法源自生物和生态过程,通过模仿自然智能以解决高维特征空间中的复杂问题,符合受生物启发的原则。与以往采用更广泛范围(结合公司、主权和个人背景)的综述不同,本研究仅专注于个人信用风险的方法策略。它对机器学习算法、特征选择方法和元启发式优化技术(包括遗传算法、粒子群优化和基于生物地理学的优化)的使用进行了分类。为了增强透明度和可比性,本综述还综合了在基准数据集上报告的分类性能指标,如准确率、AUC、F1分数和召回率。尽管由于研究方案的异质性未进行统一的实验比较,但这种结构化总结揭示了算法有效性和评估实践中的一致趋势。综述最后给出了实用建议,并概述了未来研究方向,以提高信用风险建模中的公平性、可扩展性和实时应用。