Suppr超能文献

使用深度学习识别前列腺腺体内的上皮细胞。

Recognizing Epithelial Cells in Prostatic Glands Using Deep Learning.

作者信息

Devnath Liton, Arora Puneet, Carraro Anita, Korbelik Jagoda, Keyes Mira, Wang Gang, Guillaud Martial, MacAulay Calum

机构信息

Integrative Oncology, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.

Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.

出版信息

Cells. 2025 May 18;14(10):737. doi: 10.3390/cells14100737.

Abstract

Artificial intelligence (AI) is becoming an integral part of pathological assessment and diagnostic procedures in modern pathology. As most prostate cancers (PCa) arise from glandular epithelial tissue, an AI-based methodology has been developed to recognize glandular epithelial nuclei in prostate biopsy tissue. An integrated machine-learning network, named GlandNet, was developed to correctly recognize the epithelial cells within prostate glands using cell-centric patches selected from the core biopsy specimens. Feulgen-Thionin (a DNA stoichiometric label) was used to stain biopsy sections (4-7 µm in thickness) from 82 active surveillance patients diagnosed with PCa. Images of these sections were human-annotated, and the resultant dataset consisted of 1,264,772 segmented, cell-centric nuclei patches, of which 449,879 were centered on epithelial gland nuclei from 110 needle biopsies (training set: = 66; validation set: = 22; and test set: = 22). The training of GlandNet used semi-supervised machine-learning knowledge of the training and validation cohorts and integrated both human and AI predictions to enhance its performance on the test cohort. The performance was evaluated against a consensus deliberation from three observers. The GlandNet demonstrated an average accuracy, sensitivity, specificity, and F1-score of 94.1%, 95.7%, 87.8%, and 95.2%, respectively, when tested on the 20,735 glandular cells found in the three needle biopsies with the visually best consensus predictions. Conversely, the average accuracy, sensitivity, specificity, and F1-score were 90.9%, 86.4%, 94.0%, and 89.7% when assessed on 57,217 cells found in the three needle biopsies with the visually worst consensus predictions. GlandNet is a first-generation AI with an excellent ability to differentiate between epithelial and stromal nuclei in core biopsies from patients with early prostate cancer.

摘要

人工智能(AI)正成为现代病理学中病理评估和诊断程序不可或缺的一部分。由于大多数前列腺癌(PCa)起源于腺上皮组织,因此已开发出一种基于人工智能的方法来识别前列腺活检组织中的腺上皮细胞核。开发了一种名为GlandNet的集成机器学习网络,以使用从核心活检标本中选择的以细胞为中心的切片来正确识别前列腺腺体内的上皮细胞。采用福尔根硫堇(一种DNA化学计量标记)对82例确诊为PCa的主动监测患者的活检切片(厚度为4 - 7微米)进行染色。这些切片的图像经过人工标注,所得数据集包含1,264,772个分割的、以细胞为中心的细胞核切片,其中449,879个以110次穿刺活检的腺上皮细胞核为中心(训练集:= 66;验证集:= 22;测试集:= 22)。GlandNet的训练使用了训练和验证队列的半监督机器学习知识,并整合了人工和人工智能的预测结果,以提高其在测试队列中的性能。根据三位观察者的一致审议来评估性能。当在具有视觉上最佳一致预测的三次穿刺活检中发现的20,735个腺细胞上进行测试时,GlandNet的平均准确率、灵敏度、特异性和F1分数分别为94.1%、95.7%、87.8%和95.2%。相反,在具有视觉上最差一致预测的三次穿刺活检中发现的57,217个细胞上进行评估时,平均准确率、灵敏度、特异性和F1分数分别为90.9%、86.4%、94.0%和89.7%。GlandNet是第一代人工智能,具有出色的能力,可在早期前列腺癌患者的核心活检中区分上皮细胞核和基质细胞核。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/529c/12109630/9634969b9010/cells-14-00737-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验