AIRAMATRIX PVT. LTD., Mumbai, India.
Muljibhai Patel Urological Hospital, Nadiad, India.
Sci Rep. 2022 Mar 1;12(1):3383. doi: 10.1038/s41598-022-07217-0.
Gleason grading, a risk stratification method for prostate cancer, is subjective and dependent on experience and expertise of the reporting pathologist. Deep Learning (DL) systems have shown promise in enhancing the objectivity and efficiency of Gleason grading. However, DL networks exhibit domain shift and reduced performance on Whole Slide Images (WSI) from a source other than training data. We propose a DL approach for segmenting and grading epithelial tissue using a novel training methodology that learns domain agnostic features. In this retrospective study, we analyzed WSI from three cohorts of prostate cancer patients. 3741 core needle biopsies (CNBs) received from two centers were used for training. The κquad (quadratic-weighted kappa) and AUC were measured for grade group comparison and core-level detection accuracy, respectively. Accuracy of 89.4% and κquad of 0.92 on the internal test set of 425 CNB WSI and accuracy of 85.3% and κquad of 0.96 on an external set of 1201 images, was observed. The system showed an accuracy of 83.1% and κquad of 0.93 on 1303 WSI from the third institution (blind evaluation). Our DL system, used as an assistive tool for CNB review, can potentially improve the consistency and accuracy of grading, resulting in better patient outcomes.
格里森分级是一种前列腺癌风险分层方法,具有主观性,依赖于报告病理学家的经验和专业知识。深度学习 (DL) 系统在提高格里森分级的客观性和效率方面显示出了前景。然而,DL 网络在来自训练数据以外的全切片图像 (WSI) 上表现出域转移和性能降低。我们提出了一种使用新颖的训练方法来分割和分级上皮组织的 DL 方法,该方法学习了与领域无关的特征。在这项回顾性研究中,我们分析了来自三个前列腺癌患者队列的 WSI。从两个中心获得的 3741 个核心针活检 (CNB) 用于训练。分别使用 κquad(二次加权 κ)和 AUC 测量等级组比较和核心级检测准确性。在内部测试集 425 个 CNB WSI 上的准确率为 89.4%,κquad 为 0.92,在 1201 个外部数据集上的准确率为 85.3%,κquad 为 0.96。该系统在第三个机构的 1303 个 WSI 上的准确率为 83.1%,κquad 为 0.93(盲法评估)。我们的 DL 系统用作 CNB 复查的辅助工具,有可能提高分级的一致性和准确性,从而改善患者的预后。