Suppr超能文献

金融时间序列的迭代预测:2019年至2024年的希腊股票市场

Iterative Forecasting of Financial Time Series: The Greek Stock Market from 2019 to 2024.

作者信息

Bakalis Evangelos, Zerbetto Francesco

机构信息

Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. P. Gobetti 85, 40129 Bologna, Italy.

出版信息

Entropy (Basel). 2025 May 4;27(5):497. doi: 10.3390/e27050497.

Abstract

Predicting the evolution of financial data, if at all possible, would be very beneficial in revealing the ways in which different aspects of a global environment can impact local economies. We employ an iterative stochastic differential equation that accurately forecasts an economic time series's next value by analysing its past. The input financial data are assumed to be consistent with an α-stable Lévy motion. The computation of the scaling exponent and the value of α, which characterises the type of the α-stable Lévy motion, are crucial for the iterative scheme. These two indices can be determined at each iteration from the form of the structure function, for the computation of which we use the method of generalised moments. Their values are used for the creation of the corresponding α-stable Lévy noise, which acts as a seed for the stochastic component. Furthermore, the drift and diffusion terms are calculated at each iteration. The proposed model is general, allowing the kind of stochastic process to vary from one iterative step to another, and its applicability is not restricted to financial data. As a case study, we consider Greece's stock market general index over a period of five years, from September 2019 to September 2024, after the completion of bailout programmes. Greece's economy changed from a restricted to a free market over the chosen era, and its stock market trading increments are likely to be describable by an α-stable L'evy motion. We find that α=2 and the scaling exponent varies over time for every iterative step we perform. The forecasting points follow the same trend, are in good agreement with the actual data, and for most of the forecasts, the percentage error is less than 2%.

摘要

预测金融数据的演变,如果有可能的话,将非常有助于揭示全球环境的不同方面对当地经济产生影响的方式。我们采用一种迭代随机微分方程,通过分析经济时间序列的过去来准确预测其下一个值。假设输入的金融数据与α稳定的列维运动一致。缩放指数和α值(表征α稳定列维运动的类型)的计算对于迭代方案至关重要。这两个指标可以在每次迭代时根据结构函数的形式确定,我们使用广义矩方法来计算结构函数。它们的值用于创建相应的α稳定列维噪声,该噪声作为随机分量的种子。此外,在每次迭代时计算漂移项和扩散项。所提出的模型具有通用性,允许随机过程的类型在不同的迭代步骤中变化,并且其适用性不限于金融数据。作为一个案例研究,我们考虑了2019年9月至2024年9月五年期间希腊的股票市场综合指数,这是在救助计划完成之后。在选定的时期内,希腊经济从受限市场转变为自由市场,其股票市场交易增量可能可用α稳定列维运动来描述。我们发现α = 2,并且在我们执行的每个迭代步骤中,缩放指数随时间变化。预测点遵循相同的趋势,与实际数据吻合良好,并且对于大多数预测,百分比误差小于2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c0/12111649/d5c31953ac7f/entropy-27-00497-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验