Diallo Diaoulé, Schoenfeld Jurij, Schmieding René, Korf Sascha, Kühn Martin J, Hecking Tobias
Institute of Software Technology, German Aerospace Center (DLR), 51147 Cologne, Germany.
Life and Medical Sciences Institute and Bonn Center for Mathematical Life Sciences, University of Bonn, 53127 Bonn, Germany.
Entropy (Basel). 2025 May 8;27(5):507. doi: 10.3390/e27050507.
High-resolution temporal contact networks are useful ingredients for realistic epidemic simulations. Existing solutions typically rely either on empirical studies that capture fine-grained interactions via Bluetooth or wearable sensors in confined settings or on large-scale simulation frameworks that model entire populations using generalized assumptions. However, for most realistic modeling of epidemic spread and the evaluation of countermeasures, there is a critical need for highly resolved, temporal contact networks that encompass multiple venues without sacrificing the intricate dynamics of real-world contacts. This paper presents an integrated approach for generating such networks by coupling Bayesian-optimized human mobility models (HuMMs) with a state-of-the-art epidemic simulation framework. Our primary contributions are twofold: First, we embed empirically calibrated HuMMs into an epidemic simulation environment to create a parameterizable, adaptive engine for producing synthetic, high-resolution, population-wide temporal contact network data. Second, we demonstrate through empirical evaluations that our generated networks exhibit realistic interaction structures and infection dynamics. In particular, our experiments reveal that while variations in population size do not affect the underlying network properties-a crucial feature for scalability-altering location capacities naturally influences local connectivity and epidemic outcomes. Additionally, sub-graph analyses confirm that different venue types display distinct network characteristics consistent with their real-world contact patterns. Overall, this integrated framework provides a scalable and empirically grounded method for epidemic simulation, offering a powerful tool for generating and simulating contact networks.
高分辨率时间接触网络是逼真的疫情模拟的有用组成部分。现有解决方案通常要么依赖于通过蓝牙或可穿戴传感器在受限环境中捕获细粒度交互的实证研究,要么依赖于使用广义假设对整个人口进行建模的大规模模拟框架。然而,对于疫情传播的最逼真建模和对策评估而言,迫切需要高度解析的时间接触网络,该网络涵盖多个场所,同时又不牺牲现实世界接触的复杂动态。本文提出了一种综合方法,通过将贝叶斯优化的人类移动模型(HuMMs)与先进的疫情模拟框架相结合来生成此类网络。我们的主要贡献有两方面:第一,我们将经实证校准的HuMMs嵌入疫情模拟环境,以创建一个可参数化的自适应引擎,用于生成合成的、高分辨率的、全人群的时间接触网络数据。第二,我们通过实证评估证明,我们生成的网络展现出逼真的交互结构和感染动态。特别是,我们的实验表明,虽然人口规模的变化不会影响基础网络属性——这是可扩展性的关键特征——但改变场所容量自然会影响局部连通性和疫情结果。此外,子图分析证实,不同的场所类型显示出与其现实世界接触模式一致的独特网络特征。总体而言,这个综合框架为疫情模拟提供了一种可扩展且基于实证的方法,为生成和模拟接触网络提供了一个强大工具。