Li Shuaimin, Song Chuan, Xu Li, Wang Yuxin, Zhang Wen
State Key Laboratory of Chemical Engineering and Low-Carbon Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
Tianjin Key Laboratory of Membrane Science & Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
Membranes (Basel). 2025 May 13;15(5):147. doi: 10.3390/membranes15050147.
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable measurement method has been developed for evaluating the gas barrier behavior of the membranes. Hence, an in-situ electrochemical method is developed to measure the gas permeability of membranes in the actual electrolysis environment, with the supersaturated state of H in the electrolyte and H bubbles during the electrolysis process. Four membranes, including Zirfon (a state-of-the-art alkaline WE membrane), polyphenylene sulfide fabric (PPS, a commercial alkaline WE membrane), FAA-3-PK-75 (a commercial anion-exchange membrane), and BILP-PE (a home-made composite membrane) were employed as the standard samples to perform the electrochemical measurement under different current densities, temperatures, and electrolyte concentrations. The results show that an increase in electrolytic current density or temperature or a decrease in KOH concentration can increase the H permeability of the membrane. The two porous membranes, Zirfon and PPS, are more affected by the current density and KOH concentration, while the dense FAA-3-PK-75 and BILP-PE membranes have a stronger ability to hinder H permeation. Under the conditions of 80 °C, 30 wt.% KOH, 101 kPa, and 400 mA·cm, the hydrogen permeability (×10 L·cm·cm·s) of Zirfon, PPS, FAA, and BILP-PE are 263, 367, 28.3, and 5.32, respectively.
水电解(WE)是一种绿色技术,用于生产氢气且不排放二氧化碳。水电解中的理想膜材料应能够快速传输离子,并在恶劣的工作环境中具有气体阻隔性能。然而,目前尚未开发出用于评估膜的气体阻隔行为的理想测量方法。因此,开发了一种原位电化学方法,用于在实际电解环境中测量膜的气体渗透率,该环境中存在电解质中H的过饱和状态以及电解过程中的H气泡。使用四种膜,包括Zirfon(一种最先进的碱性水电解膜)、聚苯硫醚织物(PPS,一种商用碱性水电解膜)、FAA - 3 - PK - 75(一种商用阴离子交换膜)和BILP - PE(一种自制复合膜)作为标准样品,在不同电流密度、温度和电解质浓度下进行电化学测量。结果表明,电解电流密度或温度的增加或KOH浓度的降低会增加膜的H渗透率。两种多孔膜Zirfon和PPS受电流密度和KOH浓度的影响更大,而致密的FAA - 3 - PK - 75和BILP - PE膜具有更强的阻碍H渗透的能力。在80°C、30 wt.% KOH、101 kPa和400 mA·cm的条件下,Zirfon、PPS、FAA和BILP - PE的氢气渗透率(×10⁻¹¹ L·cm⁻²·cmHg⁻¹·s⁻¹)分别为263、367、28.3和5.32。