Suppr超能文献

SwinTCS:一种采用非局部去噪的Swin Transformer压缩感知方法。

SwinTCS: A Swin Transformer Approach to Compressive Sensing with Non-Local Denoising.

作者信息

Li Xiuying, Li Haoze, Liao Hongwei, Suo Zhufeng, Chen Xuesong, Han Jiameng

机构信息

Beijing Electronic Science and Technology Institute, Beijing 100071, China.

Laboratory of Space-Air-Ground-Ocean Intergrated Network Security, School of Cyberspace Security, Hainan University, Haikou 570228, China.

出版信息

J Imaging. 2025 Apr 29;11(5):139. doi: 10.3390/jimaging11050139.

Abstract

In the era of the Internet of Things (IoT), the rapid growth of interconnected devices has intensified the demand for efficient data acquisition and processing techniques. Compressive Sensing (CS) has emerged as a promising approach for simultaneous signal acquisition and dimensionality reduction, particularly in multimedia applications. In response to the challenges presented by traditional CS reconstruction methods, such as boundary artifacts and limited robustness, we propose a novel hierarchical deep learning framework, SwinTCS, for CS-aware image reconstruction. Leveraging the Swin Transformer architecture, SwinTCS integrates a hierarchical feature representation strategy to enhance global contextual modeling while maintaining computational efficiency. Moreover, to better capture local features of images, we introduce an auxiliary convolutional neural network (CNN). Additionally, for suppressing noise and improving reconstruction quality in high-compression scenarios, we incorporate a Non-Local Means Denoising module. The experimental results on multiple public benchmark datasets indicate that SwinTCS surpasses State-of-the-Art (SOTA) methods across various evaluation metrics, thereby confirming its superior performance.

摘要

在物联网(IoT)时代,互联设备的迅速增长加剧了对高效数据采集和处理技术的需求。压缩感知(CS)已成为一种有前途的方法,可用于同时进行信号采集和降维,特别是在多媒体应用中。针对传统CS重建方法所带来的挑战,如边界伪影和有限的鲁棒性,我们提出了一种新颖的分层深度学习框架SwinTCS,用于感知CS的图像重建。SwinTCS利用Swin Transformer架构,集成了分层特征表示策略,以增强全局上下文建模,同时保持计算效率。此外,为了更好地捕捉图像的局部特征,我们引入了一个辅助卷积神经网络(CNN)。此外,为了在高压缩场景中抑制噪声并提高重建质量,我们纳入了一个非局部均值去噪模块。在多个公共基准数据集上的实验结果表明,SwinTCS在各种评估指标上均超过了现有技术(SOTA)方法,从而证实了其卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b571/12112192/1483fa5ce481/jimaging-11-00139-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验